Molinari Cesare, Liang Jingwei, Fadili Jalal
1GREYC, ENSICAEN, CNRS, Normandie Université, Caen, France.
2DAMTP, University of Cambridge, Cambridge, UK.
J Optim Theory Appl. 2019;182(2):606-639. doi: 10.1007/s10957-019-01524-9. Epub 2019 Apr 11.
Over the past decades, operator splitting methods have become ubiquitous for non-smooth optimization owing to their simplicity and efficiency. In this paper, we consider the Forward-Douglas-Rachford splitting method and study both global and local convergence rates of this method. For the global rate, we establish a sublinear convergence rate in terms of a Bregman divergence suitably designed for the objective function. Moreover, when specializing to the Forward-Backward splitting, we prove a stronger convergence rate result for the objective function value. Then locally, based on the assumption that the non-smooth part of the optimization problem is partly smooth, we establish local linear convergence of the method. More precisely, we show that the sequence generated by Forward-Douglas-Rachford first (i) identifies a smooth manifold in a finite number of iteration and then (ii) enters a local linear convergence regime, which is for instance characterized in terms of the structure of the underlying active smooth manifold. To exemplify the usefulness of the obtained result, we consider several concrete numerical experiments arising from applicative fields including, for instance, signal/image processing, inverse problems and machine learning.
在过去几十年里,由于其简单性和高效性,算子分裂方法在非光滑优化中变得无处不在。在本文中,我们考虑前向 - 道格拉斯 - 拉赫福德分裂方法,并研究该方法的全局和局部收敛速度。对于全局收敛速度,我们根据为目标函数适当设计的布雷格曼散度建立了一个次线性收敛速度。此外,当专门针对前向 - 后向分裂时,我们证明了目标函数值的更强收敛速度结果。然后在局部,基于优化问题的非光滑部分部分光滑的假设,我们建立了该方法的局部线性收敛性。更准确地说,我们表明由前向 - 道格拉斯 - 拉赫福德方法生成的序列首先(i)在有限次数的迭代中识别出一个光滑流形,然后(ii)进入局部线性收敛状态,例如根据底层活动光滑流形的结构来表征。为了举例说明所得结果的有用性,我们考虑了几个来自应用领域的具体数值实验,包括信号/图像处理、反问题和机器学习。