Smets Elena, Rios Velazquez Emmanuel, Schiavone Giuseppina, Chakroun Imen, D'Hondt Ellie, De Raedt Walter, Cornelis Jan, Janssens Olivier, Van Hoecke Sofie, Claes Stephan, Van Diest Ilse, Van Hoof Chris
1Electrical Engineering-ESAT, KU Leuven, Leuven, Belgium.
2Imec, Heverlee, Belgium.
NPJ Digit Med. 2018 Dec 12;1:67. doi: 10.1038/s41746-018-0074-9. eCollection 2018.
Physiological signals have shown to be reliable indicators of stress in laboratory studies, yet large-scale ambulatory validation is lacking. We present a large-scale cross-sectional study for ambulatory stress detection, consisting of 1002 subjects, containing subjects' demographics, baseline psychological information, and five consecutive days of free-living physiological and contextual measurements, collected through wearable devices and smartphones. This dataset represents a healthy population, showing associations between wearable physiological signals and self-reported daily-life stress. Using a data-driven approach, we identified digital phenotypes characterized by self-reported poor health indicators and high depression, anxiety and stress scores that are associated with blunted physiological responses to stress. These results emphasize the need for large-scale collections of multi-sensor data, to build personalized stress models for precision medicine.
在实验室研究中,生理信号已被证明是压力的可靠指标,但缺乏大规模的动态验证。我们开展了一项用于动态压力检测的大规模横断面研究,该研究包含1002名受试者,涵盖了受试者的人口统计学信息、基线心理信息,以及通过可穿戴设备和智能手机收集的连续五天的自由生活生理和情境测量数据。该数据集代表了健康人群,显示了可穿戴生理信号与自我报告的日常生活压力之间的关联。通过数据驱动的方法,我们识别出了以自我报告的健康指标不佳以及抑郁、焦虑和压力高分特征的数字表型,这些表型与对压力的生理反应迟钝有关。这些结果强调了大规模收集多传感器数据的必要性,以便为精准医学建立个性化压力模型。