Suppr超能文献

利用人格特质、可穿戴传感器和手机识别学业成绩、睡眠质量、压力水平和心理健康状况。

Recognizing Academic Performance, Sleep Quality, Stress Level, and Mental Health using Personality Traits, Wearable Sensors and Mobile Phones.

作者信息

Sano Akane, Phillips Andrew J, Yu Amy Z, McHill Andrew W, Taylor Sara, Jaques Natasha, Czeisler Charles A, Klerman Elizabeth B, Picard Rosalind W

机构信息

Media Lab, Massachusetts Institute of Technology, Cambridge, USA.

Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Division of Sleep Medicine, Harvard Medical School, Boston, USA.

出版信息

Int Conf Wearable Implant Body Sens Netw. 2015 Jun;2015. doi: 10.1109/BSN.2015.7299420. Epub 2015 Oct 19.

Abstract

What can wearable sensors and usage of smart phones tell us about academic performance, self-reported sleep quality, stress and mental health condition? To answer this question, we collected extensive subjective and objective data using mobile phones, surveys, and wearable sensors worn day and night from 66 participants, for 30 days each, totaling 1,980 days of data. We analyzed daily and monthly behavioral and physiological patterns and identified factors that affect academic performance (GPA), Pittsburg Sleep Quality Index (PSQI) score, perceived stress scale (PSS), and mental health composite score (MCS) from SF-12, using these month-long data. We also examined how accurately the collected data classified the participants into groups of high/low GPA, good/poor sleep quality, high/low self-reported stress, high/low MCS using feature selection and machine learning techniques. We found associations among PSQI, PSS, MCS, and GPA and personality types. Classification accuracies using the objective data from wearable sensors and mobile phones ranged from 67-92%.

摘要

可穿戴传感器和智能手机的使用能告诉我们关于学业成绩、自我报告的睡眠质量、压力和心理健康状况的哪些信息呢?为了回答这个问题,我们使用手机、调查问卷以及参与者日夜佩戴的可穿戴传感器,从66名参与者那里收集了广泛的主观和客观数据,每位参与者的数据收集时长为30天,总计1980天的数据。我们分析了每日和每月的行为及生理模式,并利用这些长达一个月的数据,确定了影响学业成绩(平均绩点)、匹兹堡睡眠质量指数(PSQI)得分、感知压力量表(PSS)以及SF-12心理健康综合得分(MCS)的因素。我们还使用特征选择和机器学习技术,研究了所收集的数据将参与者准确分类为高/低平均绩点、良好/较差睡眠质量、高/低自我报告压力、高/低心理健康综合得分组的程度。我们发现了PSQI、PSS、MCS、平均绩点和性格类型之间的关联。使用来自可穿戴传感器和手机的客观数据进行分类的准确率在67%至92%之间。

相似文献

8
A study on the effect of mobile phone use on sleep.一项关于手机使用对睡眠影响的研究。
Indian J Med Res. 2022 Mar;155(3&4):380-386. doi: 10.4103/ijmr.ijmr_2221_21.

引用本文的文献

本文引用的文献

4
Quantitative analysis of wrist electrodermal activity during sleep.睡眠期间手腕皮肤电活动的定量分析。
Int J Psychophysiol. 2014 Dec;94(3):382-9. doi: 10.1016/j.ijpsycho.2014.09.011. Epub 2014 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验