Talirz Leopold, Söde Hajo, Kawai Shigeki, Ruffieux Pascal, Meyer Ernst, Feng Xinliang, Müllen Klaus, Fasel Roman, Pignedoli Carlo A, Passerone Daniele
nanotech@surfaces laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingenierie Chimiques, Valais, École Polytechnique Fédérale de, Lausanne, Sion, Switzerland.
Chemphyschem. 2019 Sep 17;20(18):2348-2353. doi: 10.1002/cphc.201900313. Epub 2019 Aug 21.
We study the band gap of finite armchair graphene nanoribbons (7-AGNRs) on Au(111) through scanning tunneling microscopy/spectroscopy combined with density functional theory calculations. The band gap of 7-AGNRs with lengths of 8 nm and more is converged to within 50 meV of its bulk value of , while the band gap opens by several hundred meV in very short 7-AGNRs. We demonstrate that even an atomic defect, such as the addition of one hydrogen atom at the termini, has a significant effect - in this case, lowering the band gap. The effect can be captured in terms of a simple analytical model by introducing an effective "electronic length".
我们通过扫描隧道显微镜/光谱技术结合密度泛函理论计算,研究了金(111)表面有限扶手椅型石墨烯纳米带(7-AGNRs)的带隙。长度为8纳米及以上的7-AGNRs的带隙收敛于其体值 的50毫电子伏特以内,而在非常短的7-AGNRs中带隙会打开几百毫电子伏特。我们证明,即使是一个原子缺陷,比如在末端添加一个氢原子,也会产生显著影响——在这种情况下会降低带隙。通过引入一个有效的“电子长度”,可以用一个简单的解析模型来描述这种影响。