Suppr超能文献

用于通过压电催化效应高效降解染料的压电材料-聚合物复合多孔泡沫

Piezoelectric Material-Polymer Composite Porous Foam for Efficient Dye Degradation via the Piezo-Catalytic Effect.

作者信息

Qian Weiqi, Zhao Kun, Zhang Ding, Bowen Chris R, Wang Yuanhao, Yang Ya

机构信息

CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , P. R. China.

School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China.

出版信息

ACS Appl Mater Interfaces. 2019 Aug 7;11(31):27862-27869. doi: 10.1021/acsami.9b07857. Epub 2019 Jul 26.

Abstract

Piezoelectric nanomaterials have been utilized to realize effective charge separation for degrading organic pollutants in water under the action of mechanical vibrations. However, in particulate form, the nanostructured piezoelectric catalysts can flow into the aqueous pollutant and limit its recyclability and reuse. Here, we report a new method of using a barium titanate (BaTiO, BTO)-polydimethylsiloxane composite porous foam catalyst to address the challenge of secondary pollution and reusable limits. Piezo-catalytic dye degradation activity of the porous foam can degrade a Rhodamine B (RhB) dye solution by ∼94%, and the composite material exhibits excellent stability after repeated decomposition of 12 cycles. It is suggested that under ultrasonic vibrations, the piezoelectric BTO materials create separated electron-hole pairs that react with hydroxyl ions and oxygen molecules to generate superoxide (O) and hydroxyl (OH) radicals for organic dye degradation. The degradation efficiency of RhB is associated with the piezoelectric constant, the specific surface area, and the shape of the material.

摘要

压电纳米材料已被用于在机械振动作用下实现有效的电荷分离,以降解水中的有机污染物。然而,以颗粒形式存在时,纳米结构的压电催化剂会流入含污染物的水中,并限制其可回收性和再利用。在此,我们报告一种使用钛酸钡(BaTiO,BTO)-聚二甲基硅氧烷复合多孔泡沫催化剂的新方法,以应对二次污染和可重复使用限制的挑战。该多孔泡沫的压电催化染料降解活性可使罗丹明B(RhB)染料溶液降解约94%,并且该复合材料在重复分解12个循环后表现出优异的稳定性。研究表明,在超声振动下,压电BTO材料产生分离的电子-空穴对,这些电子-空穴对与氢氧根离子和氧分子反应,生成超氧自由基(O)和羟基自由基(OH)以降解有机染料。RhB的降解效率与压电常数、比表面积和材料形状有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验