Suppr超能文献

用于增强废水中亚甲基蓝和环丙沙星压电光催化降解的薄膜(FTO/BaTiO/AgNPs)

Thin Films (FTO/BaTiO/AgNPs) for Enhanced Piezo-Photocatalytic Degradation of Methylene Blue and Ciprofloxacin in Wastewater.

作者信息

Masekela Daniel, Hintsho-Mbita Nomso C, Ntsendwana Bulelwa, Mabuba Nonhlangabezo

机构信息

Department of Chemical Sciences (formerly known as Applied Chemistry), University of Johannesburg, P.O Box 17011, Doornfontein, Johannesburg 2028, South Africa.

Department of Chemistry, University of Limpopo, Sovenga, Polokwane 0727, South Africa.

出版信息

ACS Omega. 2022 Jul 5;7(28):24329-24343. doi: 10.1021/acsomega.2c01699. eCollection 2022 Jul 19.

Abstract

In this study, we investigate the ability of barium titanate/silver nanoparticles (BaTiO/AgNPs) composites deposited on a fluorine-doped tin oxide (FTO) glass using tape-casting method to produce piezoelectric thin film (FTO/BaTiO/AgNPs) for piezocatalytic, photocatalytic, and piezo-photocatalytic degradation of methylene blue (MB) and ciprofloxacin (CIP) in wastewater. The prepared piezoelectric materials (BaTiO and BaTiO/AgNPs) were characterized using XRD, SEM, TEM, EDS, UV-DRS, TGA, PL, BET, EIS, and chronoamperometry. The UV-DRS showed the surface plasmon resonance (SPR) of Ag nanoparticles on the surface of BaTiO at a wavelength of 505 nm. The TEM images revealed the average Ag nanoparticle size deposited on the surface of BaTiO to be in the range of 10-15 nm. The chronoamperometry showed that the photoreduction of silver nanoparticles (AgNPs) onto BaTiO (BTO) resulted in a piezo-electrochemical current enhancement from 0.24 to 0.38 mA. The composites (FTO/BaTiO/AgNPs) achieved a higher degradation of MB and CIP when the photocatalysis and piezocatalysis processes were merged. Under both ultrasonic vibration and UV light exposure, FTO/BTO/AgNPs degraded about 72 and 98% of CIP and MB from wastewater, respectively. These piezoelectric thin films were shown to be efficient and reusable even after five cycles, suggesting that they are highly stable. Furthermore, the reactive oxygen species studies demonstrated that hydroxyl radicals (·OH) were the most effective species during degradation of MB, with minor superoxide radicals (·O ) and holes (h). From this study, we were able to show that these materials can be used as multifunctional materials as they were able to degrade both the dye and pharmaceutical pollutants. Moreover, they were more efficient through the piezo-photocatalytic process.

摘要

在本研究中,我们探究了采用流延法沉积在氟掺杂氧化锡(FTO)玻璃上的钛酸钡/银纳米颗粒(BaTiO₃/AgNPs)复合材料制备用于废水中亚甲基蓝(MB)和环丙沙星(CIP)的压电催化、光催化及压电光催化降解的压电薄膜(FTO/BaTiO₃/AgNPs)的能力。使用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱仪(EDS)、紫外可见漫反射光谱(UV-DRS)、热重分析(TGA)、光致发光光谱(PL)、比表面积分析(BET)、电化学阻抗谱(EIS)和计时电流法对制备的压电材料(BaTiO₃和BaTiO₃/AgNPs)进行了表征。UV-DRS显示在505 nm波长处BaTiO₃表面的Ag纳米颗粒存在表面等离子体共振(SPR)。TEM图像显示沉积在BaTiO₃表面的Ag纳米颗粒平均尺寸在10 - 15 nm范围内。计时电流法表明银纳米颗粒(AgNPs)在BaTiO₃(BTO)上的光还原导致压电电化学电流从0.24 mA增强到0.38 mA。当光催化和压电催化过程合并时,复合材料(FTO/BaTiO₃/AgNPs)对MB和CIP实现了更高程度的降解。在超声振动和紫外光照射下,FTO/BTO/AgNPs分别从废水中降解了约72%和98%的CIP和MB。这些压电薄膜即使在五个循环后仍显示出高效且可重复使用,表明它们具有高度稳定性。此外,活性氧物种研究表明,在MB降解过程中羟基自由基(·OH)是最有效的物种,超氧自由基(·O₂⁻)和空穴(h⁺)较少。通过本研究,我们能够表明这些材料可作为多功能材料,因为它们能够降解染料和药物污染物。此外,它们通过压电光催化过程更高效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74a6/9301950/7a8715d52739/ao2c01699_0009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验