Suppr超能文献

基于负泊松比材料与结构的传感器综述

Sensors Based on Auxetic Materials and Structures: A Review.

作者信息

Dong Shanshan, Hu Hong

机构信息

School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China.

出版信息

Materials (Basel). 2023 May 8;16(9):3603. doi: 10.3390/ma16093603.

Abstract

Auxetic materials exhibit a negative Poisson's ratio under tension or compression, and such counter-intuitive behavior leads to enhanced mechanical properties such as shear resistance, impact resistance, and shape adaptability. Auxetic materials with these excellent properties show great potential applications in personal protection, medical health, sensing equipment, and other fields. However, there are still many limitations in them, from laboratory research to real applications. There have been many reported studies applying auxetic materials or structures to the development of sensing devices in anticipation of improving sensitivity. This review mainly focuses on the use of auxetic materials or auxetic structures in sensors, providing a broad review of auxetic-based sensing devices. The material selection, structure design, preparation method, sensing mechanism, and sensing performance are introduced. In addition, we explore the relationship between the auxetic mechanism and the sensing performance and summarize how the auxetic behavior enhances the sensitivity. Furthermore, potential applications of sensors based on the auxetic mechanism are discussed, and the remaining challenges and future research directions are suggested. This review may help to promote further research and application of auxetic sensing devices.

摘要

拉胀材料在拉伸或压缩时表现出负泊松比,这种违反直觉的行为会导致诸如抗剪、抗冲击和形状适应性等机械性能的增强。具有这些优异性能的拉胀材料在个人防护、医疗健康、传感设备等领域显示出巨大的潜在应用价值。然而,从实验室研究到实际应用,它们仍存在许多局限性。已有许多报道研究将拉胀材料或结构应用于传感设备的开发,以期提高灵敏度。本综述主要聚焦于拉胀材料或拉胀结构在传感器中的应用,对基于拉胀的传感设备进行广泛综述。介绍了材料选择、结构设计、制备方法、传感机制和传感性能。此外,我们探讨了拉胀机制与传感性能之间的关系,并总结了拉胀行为如何提高灵敏度。此外,还讨论了基于拉胀机制的传感器的潜在应用,并提出了剩余的挑战和未来的研究方向。本综述可能有助于推动拉胀传感设备的进一步研究和应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e219/10179841/5371ccb8644e/materials-16-03603-g002.jpg

相似文献

1
Sensors Based on Auxetic Materials and Structures: A Review.
Materials (Basel). 2023 May 8;16(9):3603. doi: 10.3390/ma16093603.
2
Sensitivity Improvement of Highly Stretchable Capacitive Strain Sensors by Hierarchical Auxetic Structures.
Front Robot AI. 2019 Nov 22;6:127. doi: 10.3389/frobt.2019.00127. eCollection 2019.
4
2D material-enhanced multi-fold self-sensing and programmable deployable lattice structure.
Sci Rep. 2024 Aug 30;14(1):20244. doi: 10.1038/s41598-024-70607-z.
6
Review: Auxetic Polymer-Based Mechanical Metamaterials for Biomedical Applications.
ACS Biomater Sci Eng. 2022 Jul 11;8(7):2798-2824. doi: 10.1021/acsbiomaterials.2c00109. Epub 2022 Jun 16.
7
Ideal isotropic auxetic networks from random networks.
Soft Matter. 2019 Oct 28;15(40):8084-8091. doi: 10.1039/c9sm01241a. Epub 2019 Oct 2.
8
Coupling Chiral Cuboids with Wholly Auxetic Response.
Research (Wash D C). 2024 Aug 30;7:0463. doi: 10.34133/research.0463. eCollection 2024.
9
Auxetic Biomedical Metamaterials for Orthopedic Surgery Applications: A Comprehensive Review.
Orthop Surg. 2024 Aug;16(8):1801-1815. doi: 10.1111/os.14142. Epub 2024 Jul 3.

引用本文的文献

1
Research on the Poisson's Ratio of Black Phosphorene Nanotubes Under Axial Tension.
Nanomaterials (Basel). 2025 Aug 15;15(16):1259. doi: 10.3390/nano15161259.
2
Dynamics of Polymeric Re-Entrant Auxetic Structures: Cyclic Compression Studies.
Polymers (Basel). 2025 Mar 20;17(6):825. doi: 10.3390/polym17060825.
3
Smart Textiles for Personalized Sports and Healthcare.
Nanomicro Lett. 2025 Apr 25;17(1):232. doi: 10.1007/s40820-025-01749-6.
4
Semi-auxetic piezoresistive textronic.
Sci Rep. 2025 Feb 12;15(1):5176. doi: 10.1038/s41598-024-83330-6.
5
Displacement Measurement Method Based on Double-Arrowhead Auxetic Tubular Structure.
Sensors (Basel). 2023 Nov 30;23(23):9544. doi: 10.3390/s23239544.

本文引用的文献

1
HACS: Helical Auxetic Yarn Capacitive Strain Sensors with Sensitivity Beyond the Theoretical Limit.
Adv Mater. 2023 Mar;35(10):e2209321. doi: 10.1002/adma.202209321. Epub 2023 Jan 6.
3
Design and evaluation of 3D-printed auxetic structures coated by CWPU/graphene as strain sensor.
Sci Rep. 2022 May 11;12(1):7780. doi: 10.1038/s41598-022-11540-x.
5
Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials.
Adv Sci (Weinh). 2021 Sep;8(17):e2100864. doi: 10.1002/advs.202100864. Epub 2021 Jul 13.
7
Abrasion Resistant/Waterproof Stretchable Triboelectric Yarns Based on Fermat Spirals.
Adv Mater. 2021 Jul;33(26):e2100782. doi: 10.1002/adma.202100782. Epub 2021 May 24.
8
High-Performance Auxetic Bilayer Conductive Mesh-Based Multi-Material Integrated Stretchable Strain Sensors.
ACS Appl Mater Interfaces. 2021 May 19;13(19):23038-23048. doi: 10.1021/acsami.1c06295. Epub 2021 May 6.
9
Sensitivity Improvement of Highly Stretchable Capacitive Strain Sensors by Hierarchical Auxetic Structures.
Front Robot AI. 2019 Nov 22;6:127. doi: 10.3389/frobt.2019.00127. eCollection 2019.
10
3D Printable Strain Sensors from Deep Eutectic Solvents and Cellulose Nanocrystals.
ACS Appl Mater Interfaces. 2020 Jul 29;12(30):34235-34244. doi: 10.1021/acsami.0c11152. Epub 2020 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验