Suppr超能文献

动态压缩加载可改善体外微骨折模型中的软骨修复:基于纤维蛋白凝胶支架包埋结缔组织祖细胞的模拟微骨折的 2 种机械加载方案的比较。

Dynamic Compressive Loading Improves Cartilage Repair in an In Vitro Model of Microfracture: Comparison of 2 Mechanical Loading Regimens on Simulated Microfracture Based on Fibrin Gel Scaffolds Encapsulating Connective Tissue Progenitor Cells.

机构信息

Center for Cellular and Molecular Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

Hyogo College of Medicine, Nishinomiya, Hyōgo, Japan.

出版信息

Am J Sports Med. 2019 Jul;47(9):2188-2199. doi: 10.1177/0363546519855645.

Abstract

BACKGROUND

Microfracture of focal chondral defects often produces fibrocartilage, which inconsistently integrates with the surrounding native tissue and possesses inferior mechanical properties compared with hyaline cartilage. Mechanical loading modulates cartilage during development, but it remains unclear how loads produced in the course of postoperative rehabilitation affect the formation of the new fibrocartilaginous tissue.

PURPOSE

To assess the influence of different mechanical loading regimens, including dynamic compressive stress or rotational shear stress, on an in vitro model of microfracture repair based on fibrin gel scaffolds encapsulating connective tissue progenitor cells.

STUDY DESIGN

Controlled laboratory study.

METHODS

Cylindrical cores were made in bovine hyaline cartilage explants and filled with either (1) cartilage plug returned to original location (positive control), (2) fibrin gel (negative control), or (3) fibrin gel with encapsulated connective tissue progenitor cells (microfracture mimic). Constructs were then subjected to 1 of 3 loading regimens: (1) no loading (ie, unloaded), (2) dynamic compressive loading, or (3) rotational shear loading. On days 0, 7, 14, and 21, the integration strength between the outer chondral ring and the central insert was measured with an electroforce mechanical tester. The central core component, mimicking microfracture neotissue, was also analyzed for gene expression by real-time reverse-transcription polymerase chain reaction, glycosaminoglycan, and double-stranded DNA contents, and tissue morphology was analyzed histologically.

RESULTS

Integration strengths between the outer chondral ring and central neotissue of the cartilage plug and fibrin + cells groups significantly increased upon exposure to compressive loading compared with day 0 controls ( = .007). Compressive loading upregulated expression of chondrogenesis-associated genes (SRY-related HGMG box-containing gene 9 [], collagen type II α1 [], and increased ratio of to collagen type I α1 [], an indicator of more hyaline phenotype) in the neotissue of the fibrin + cells group compared with the unloaded group at day 21 ( = .0032; < .0001; = .0308). Fibrin + cells constructs exposed to shear loading expressed higher levels of chondrogenic genes compared with the unloaded condition, but the levels were not as high as those for the compressive loading condition. Furthermore, catabolic markers ( and ) were significantly upregulated by shear loading ( = .0234 and < .0001, respectively) at day 21 compared with day 0.

CONCLUSION

Dynamic compressive loading enhanced neotissue chondrogenesis and maturation in a simulated in vitro model of microfracture, with generation of more hyaline-like cartilage and improved integration with the surrounding tissue.

CLINICAL RELEVANCE

Controlled loading after microfracture may be beneficial in promoting the formation of more hyaline-like cartilage repair tissue; however, the loading regimens applied in this in vitro model do not yet fully reproduce the complex loading patterns created during clinical rehabilitation. Further optimization of in vitro models of cartilage repair may ultimately inform rehabilitation protocols.

摘要

背景

微骨折术治疗局灶性软骨缺损常产生纤维软骨,其与周围的天然组织不一致整合,并且机械性能不如透明软骨。机械负荷在发育过程中调节软骨,但尚不清楚在术后康复过程中产生的负荷如何影响新纤维软骨组织的形成。

目的

评估不同机械加载方案(包括动态压缩应力或旋转剪切应力)对基于纤维蛋白凝胶支架包埋结缔组织祖细胞的微骨折修复的体外模型的影响。

研究设计

对照实验室研究。

方法

在牛透明软骨标本中制作圆柱形核心,并分别填入(1)返回原位的软骨塞(阳性对照)、(2)纤维蛋白凝胶(阴性对照)或(3)包埋结缔组织祖细胞的纤维蛋白凝胶(微骨折模拟物)。然后将构建体置于以下 3 种加载方案中的 1 种:(1)无加载(即未加载)、(2)动态压缩加载或(3)旋转剪切加载。在第 0、7、14 和 21 天,用电动力机械测试仪测量外环软骨与中央插入物之间的整合强度。还通过实时逆转录聚合酶链反应、糖胺聚糖和双链 DNA 含量分析中央核心成分(模拟微骨折新组织)的基因表达,并进行组织形态学分析。

结果

与对照组相比,软骨塞和纤维蛋白+细胞组的外环软骨和中央新组织之间的整合强度在暴露于压缩载荷后显著增加(=.007)。与未加载组相比,压缩加载在第 21 天增加了纤维蛋白+细胞组新组织中与软骨形成相关的基因(性别决定区 Y 相关高迁移率族盒基因 9 []、胶原 II 型 α1 []和胶原 I 型 α1 比值增加[],表明更透明表型)的表达(=.0032;<.0001;=.0308)。与未加载条件相比,暴露于剪切载荷的纤维蛋白+细胞构建体表达了更高水平的软骨形成基因,但水平不如压缩加载条件高。此外,与第 0 天相比,在第 21 天,分解代谢标志物(和)被剪切加载显著上调(=.0234 和<.0001,分别)。

结论

在微骨折的体外模拟模型中,动态压缩加载增强了新组织的软骨形成和成熟,产生了更透明样软骨,并改善了与周围组织的整合。

临床相关性

微骨折后控制加载可能有益于促进更透明样软骨修复组织的形成;然而,该体外模型中应用的加载方案尚未完全复制临床康复过程中产生的复杂加载模式。优化软骨修复的体外模型最终可能为康复方案提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eae7/6637720/10887c20093a/10.1177_0363546519855645-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验