文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

4D Biofabrication of Magnetically Augmented Callus Assembloid Implants Enables Rapid Endochondral Ossification via Activation of Mechanosensitive Pathways.

作者信息

Ioannidis Konstantinos, Dimopoulos Andreas, Decoene Isaak, Guilliams Maya, Svitina Hanna, Storozhuk Liudmyla, de Oliveira-Silva Rodrigo, Basov Sergey, Thanh Nguyen Thi Kim, Mourdikoudis Stefanos, Van Bael Margriet J, Smeets Bart, Sakellariou Dimitrios, Papantoniou Ioannis

机构信息

Prometheus Translational Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, Leuven, 3000, Belgium.

Skeletal Biology and Engineering Research Centre, Department of Development & Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, Leuven, 3000, Belgium.

出版信息

Adv Sci (Weinh). 2025 Apr;12(15):e2413680. doi: 10.1002/advs.202413680. Epub 2025 Feb 25.


DOI:10.1002/advs.202413680
PMID:39998420
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12005758/
Abstract

The use of magnetic-driven strategies for non-contact manipulation of engineered living modules opens up new possibilities for tissue engineering. The integration of magnetic nanoparticles (MNPs) with cartilaginous microtissues enables model-driven 4D bottom-up biofabrication of remotely actuated assembloids, providing unique properties to mechanoresponsive tissues, particularly skeletal constructs. However, for clinical use, the long-term effects of magnetic stimulation on phenotype and in vivo functionality need further exploration. Magnetic-driven biofabrication includes both rapid processes, such as guided microtissue assembly, and slower biological processes, like extracellular matrix secretion. This work explores the interplay between magnetic fields and MNP-loaded cartilaginous microtissues through mathematical modeling and experimental approaches, investigating long-term stimulation effects on ECM maturation and chondrogenic hypertrophy. Transcriptomic analysis reveal that magnetic stimulation activated mechanosensitive pathways and catabolic processes, driving accelerated cartilage-to-bone transitions via endochondral ossification, outcomes not observed in non-stimulated controls. This study paves the way for pre-programmed, remotely actuated skeletal assembloids with superior bone-forming capacity for regenerating challenging bone fractures.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d418/12005758/9fd3577a72ca/ADVS-12-2413680-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d418/12005758/70b0d9287805/ADVS-12-2413680-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d418/12005758/5448eeed649f/ADVS-12-2413680-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d418/12005758/82e3a4192247/ADVS-12-2413680-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d418/12005758/01cca99dc2e7/ADVS-12-2413680-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d418/12005758/2f240fce86d6/ADVS-12-2413680-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d418/12005758/1c3c4e1075ba/ADVS-12-2413680-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d418/12005758/a8b5fe8f1be9/ADVS-12-2413680-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d418/12005758/9fd3577a72ca/ADVS-12-2413680-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d418/12005758/70b0d9287805/ADVS-12-2413680-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d418/12005758/5448eeed649f/ADVS-12-2413680-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d418/12005758/82e3a4192247/ADVS-12-2413680-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d418/12005758/01cca99dc2e7/ADVS-12-2413680-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d418/12005758/2f240fce86d6/ADVS-12-2413680-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d418/12005758/1c3c4e1075ba/ADVS-12-2413680-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d418/12005758/a8b5fe8f1be9/ADVS-12-2413680-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d418/12005758/9fd3577a72ca/ADVS-12-2413680-g007.jpg

相似文献

[1]
4D Biofabrication of Magnetically Augmented Callus Assembloid Implants Enables Rapid Endochondral Ossification via Activation of Mechanosensitive Pathways.

Adv Sci (Weinh). 2025-4

[2]
The maturation state and density of human cartilage microtissues influence their fusion and development into scaled-up grafts.

Acta Biomater. 2025-3-1

[3]
Structurally defined cartilaginous MEW-assembloids for critical-size long bone healing.

Biomaterials. 2025-8

[4]
Engineering bone-forming biohybrid sheets through the integration of melt electrowritten membranes and cartilaginous microspheroids.

Acta Biomater. 2023-7-15

[5]
Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells.

Biomaterials. 2019-9-5

[6]
Robotics-Driven Manufacturing of Cartilaginous Microtissues for Skeletal Tissue Engineering Applications.

Stem Cells Transl Med. 2024-3-15

[7]
3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects.

Acta Biomater. 2020-9-1

[8]
Engineering High-Quality Cartilage Microtissues Using Hydrocortisone Functionalized Microwells.

Tissue Eng Part C Methods. 2023-4

[9]
Engineering cartilage or endochondral bone: a comparison of different naturally derived hydrogels.

Acta Biomater. 2015-2

[10]
Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification.

Acta Biomater. 2018-7-4

本文引用的文献

[1]
Comprehensive Analysis of the Potential Toxicity of Magnetic Iron Oxide Nanoparticles for Medical Applications: Cellular Mechanisms and Systemic Effects.

Int J Mol Sci. 2024-11-8

[2]
A dynamically loaded model to study neocartilage and integration in human cartilage repair.

Front Cell Dev Biol. 2024-9-30

[3]
Laser-assisted bioprinting of targeted cartilaginous spheroids for high density bottom-up tissue engineering.

Biofabrication. 2024-8-22

[4]
Efficient computational model of the in-flow capturing of magnetic nanoparticles by a cylindrical magnet for cancer nanomedicine.

Phys Rev E. 2024-6

[5]
Activation of Wnt signaling in human fracture callus and nonunion tissues.

Bone Rep. 2024-6-19

[6]
Magnetogenetics as a promising tool for controlling cellular signaling pathways.

J Nanobiotechnology. 2024-6-10

[7]
Hippo-PKCζ-NFκB signaling axis: A druggable modulator of chondrocyte responses to mechanical stress.

iScience. 2024-5-15

[8]
The Hippo signaling pathway in development and regeneration.

Cell Rep. 2024-3-26

[9]
Tenascin-C promotes endochondral ossification and fracture healing through Hedgehog and Hippo signaling.

Biochem Biophys Res Commun. 2024-4-9

[10]
Magnetically driven formation of 3D freestanding soft bioscaffolds.

Sci Adv. 2024-2-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索