National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.
University of the Chinese Academy of Sciences, Beijing, 100049, China.
Genome Biol. 2019 Jul 15;20(1):139. doi: 10.1186/s13059-019-1746-8.
Bread wheat is an allohexaploid species with a 16-Gb genome that has large intergenic regions, which presents a big challenge for pinpointing regulatory elements and further revealing the transcriptional regulatory mechanisms. Chromatin profiling to characterize the combinatorial patterns of chromatin signatures is a powerful means to detect functional elements and clarify regulatory activities in human studies.
In the present study, through comprehensive analyses of the open chromatin, DNA methylome, seven major chromatin marks, and transcriptomic data generated for seedlings of allohexaploid wheat, we detected distinct chromatin architectural features surrounding various functional elements, including genes, promoters, enhancer-like elements, and transposons. Thousands of new genic regions and cis-regulatory elements are identified based on the combinatorial pattern of chromatin features. Roughly 1.5% of the genome encodes a subset of active regulatory elements, including promoters and enhancer-like elements, which are characterized by a high degree of chromatin openness and histone acetylation, an abundance of CpG islands, and low DNA methylation levels. A comparison across sub-genomes reveals that evolutionary selection on gene regulation is targeted at the sequence and chromatin feature levels. The divergent enrichment of cis-elements between enhancer-like sequences and promoters implies these functional elements are targeted by different transcription factors.
We herein present a systematic epigenomic map for the annotation of cis-regulatory elements in the bread wheat genome, which provides new insights into the connections between chromatin modifications and cis-regulatory activities in allohexaploid wheat.
面包小麦是一种含有 16GB 基因组的异源六倍体物种,具有较大的基因间区,这给精确确定调控元件和进一步揭示转录调控机制带来了巨大挑战。染色质谱分析用于描述染色质特征的组合模式,是检测功能元件和阐明人类研究中调控活性的有力手段。
本研究通过对异源六倍体小麦幼苗的开放染色质、DNA 甲基化组、七种主要染色质标记和转录组数据进行综合分析,检测到了各种功能元件(包括基因、启动子、增强子样元件和转座子)周围独特的染色质结构特征。基于染色质特征的组合模式,鉴定了数千个新的基因区和顺式调控元件。大约 1.5%的基因组编码了一组具有活性的调控元件,包括启动子和增强子样元件,其特征是具有高度的染色质开放性和组蛋白乙酰化、丰富的 CpG 岛和低水平的 DNA 甲基化。亚基因组之间的比较表明,基因调控的进化选择针对序列和染色质特征水平。增强子样序列和启动子之间顺式元件的差异富集表明这些功能元件是由不同的转录因子靶向的。
本文为面包小麦基因组中顺式调控元件的注释提供了一个系统的表观基因组图谱,为异源六倍体小麦中染色质修饰和顺式调控活性之间的联系提供了新的见解。