Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, United Kingdom.
British Heart Foundation Centre of Research Excellence, King's College London, SE1 1UL London, United Kingdom.
Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15485-15494. doi: 10.1073/pnas.1903033116. Epub 2019 Jul 15.
The heart's response to varying demands of the body is regulated by signaling pathways that activate protein kinases which phosphorylate sarcomeric proteins. Although phosphorylation of cardiac myosin binding protein-C (cMyBP-C) has been recognized as a key regulator of myocardial contractility, little is known about its mechanism of action. Here, we used protein kinase A (PKA) and Cε (PKCε), as well as ribosomal S6 kinase II (RSK2), which have different specificities for cMyBP-C's multiple phosphorylation sites, to show that individual sites are not independent, and that phosphorylation of cMyBP-C is controlled by positive and negative regulatory coupling between those sites. PKA phosphorylation of cMyBP-C's N terminus on 3 conserved serine residues is hierarchical and antagonizes phosphorylation by PKCε, and vice versa. In contrast, RSK2 phosphorylation of cMyBP-C accelerates PKA phosphorylation. We used cMyBP-C's regulatory N-terminal domains in defined phosphorylation states for protein-protein interaction studies with isolated cardiac native thin filaments and the S2 domain of cardiac myosin to show that site-specific phosphorylation of this region of cMyBP-C controls its interaction with both the actin-containing thin and myosin-containing thick filaments. We also used fluorescence probes on the myosin-associated regulatory light chain in the thick filaments and on troponin C in the thin filaments to monitor structural changes in the myofilaments of intact heart muscle cells associated with activation of myocardial contraction by the N-terminal region of cMyBP-C in its different phosphorylation states. Our results suggest that cMyBP-C acts as a sarcomeric integrator of multiple signaling pathways that determines downstream physiological function.
心脏对身体不同需求的反应是通过信号通路调节的,这些信号通路激活蛋白激酶,使肌球蛋白结合蛋白-C(cMyBP-C)磷酸化。虽然 cMyBP-C 的磷酸化已被认为是心肌收缩力的关键调节因子,但对其作用机制知之甚少。在这里,我们使用蛋白激酶 A(PKA)和 Cε(PKCε)以及核糖体 S6 激酶 II(RSK2),它们对 cMyBP-C 的多个磷酸化位点具有不同的特异性,表明各个位点不是独立的,并且 cMyBP-C 的磷酸化受到这些位点之间的正、负调节偶联的控制。PKA 对 cMyBP-C 的 N 端 3 个保守丝氨酸残基的磷酸化是分级的,拮抗 PKCε的磷酸化,反之亦然。相比之下,RSK2 对 cMyBP-C 的磷酸化加速了 PKA 的磷酸化。我们使用 cMyBP-C 的调节 N 端结构域在不同的磷酸化状态下进行蛋白质-蛋白质相互作用研究,用分离的心脏天然细肌丝和心脏肌球蛋白的 S2 结构域进行研究,表明 cMyBP-C 这一区域的特定位点磷酸化控制了它与肌动蛋白和肌球蛋白都含有的细肌丝和粗肌丝的相互作用。我们还使用厚肌丝上肌球蛋白相关的调节轻链上的荧光探针和细肌丝上的肌钙蛋白 C 来监测与 cMyBP-C 的 N 端区域在不同磷酸化状态下激活心肌收缩相关的完整心肌细胞中肌丝的结构变化。我们的结果表明,cMyBP-C 作为一种肌节整合器,整合了多种信号通路,决定了下游的生理功能。