Polman Albert, Kociak Mathieu, García de Abajo F Javier
Center for Nanophotonics, AMOLF, Amsterdam, the Netherlands.
Laboratoire de Physique des Solides, Université de Paris-Sud, Orsay, France.
Nat Mater. 2019 Nov;18(11):1158-1171. doi: 10.1038/s41563-019-0409-1. Epub 2019 Jul 15.
Progress in electron-beam spectroscopies has recently enabled the study of optical excitations with combined space, energy and time resolution in the nanometre, millielectronvolt and femtosecond domain, thus providing unique access into nanophotonic structures and their detailed optical responses. These techniques rely on ~1-300 keV electron beams focused at the sample down to sub-nanometre spots, temporally compressed in wavepackets a few femtoseconds long, and in some cases controlled by ultrafast light pulses. The electrons undergo energy losses and gains (also giving rise to cathodoluminescence light emission), which are recorded to reveal the optical landscape along the beam path. This Review portraits these advances, with a focus on coherent excitations, emphasizing the increasing level of control over the electron wavefunctions and ensuing applications in the study and technological use of optically resonant modes and polaritons in nanoparticles, 2D materials and engineered nanostructures.
电子束光谱学的进展最近使得人们能够在纳米、毫电子伏特和飞秒领域内,结合空间、能量和时间分辨率来研究光激发,从而为深入了解纳米光子结构及其详细的光学响应提供了独特途径。这些技术依赖于能量为~1-300 keV的电子束,该电子束聚焦在样品上形成亚纳米级的光斑,在时间上被压缩成几个飞秒长的波包,并且在某些情况下由超快光脉冲控制。电子会经历能量损失和增益(这也会产生阴极发光),记录这些能量损失和增益以揭示沿光束路径的光学图景。本综述描绘了这些进展,重点关注相干激发,强调对电子波函数的控制水平不断提高,以及在纳米颗粒、二维材料和工程纳米结构中的光学共振模式和极化激元的研究及技术应用。