García de Abajo F Javier, Di Giulio Valerio
ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain.
ACS Photonics. 2021 Apr 21;8(4):945-974. doi: 10.1021/acsphotonics.0c01950. Epub 2021 Mar 25.
Free electron beams such as those employed in electron microscopes have evolved into powerful tools to investigate photonic nanostructures with an unrivaled combination of spatial and spectral precision through the analysis of electron energy losses and cathodoluminescence light emission. In combination with ultrafast optics, the emerging field of ultrafast electron microscopy utilizes synchronized femtosecond electron and light pulses that are aimed at the sampled structures, holding the promise to bring simultaneous sub-Å-sub-fs-sub-meV space-time-energy resolution to the study of material and optical-field dynamics. In addition, these advances enable the manipulation of the wave function of individual free electrons in unprecedented ways, opening sound prospects to probe and control quantum excitations at the nanoscale. Here, we provide an overview of photonics research based on free electrons, supplemented by original theoretical insights and discussion of several stimulating challenges and opportunities. In particular, we show that the excitation probability by a single electron is independent of its wave function, apart from a classical average over the transverse beam density profile, whereas the probability for two or more modulated electrons depends on their relative spatial arrangement, thus reflecting the quantum nature of their interactions. We derive first-principles analytical expressions that embody these results and have general validity for arbitrarily shaped electrons and any type of electron-sample interaction. We conclude with some perspectives on various exciting directions that include disruptive approaches to noninvasive spectroscopy and microscopy, the possibility of sampling the nonlinear optical response at the nanoscale, the manipulation of the density matrices associated with free electrons and optical sample modes, and appealing applications in optical modulation of electron beams, all of which could potentially revolutionize the use of free electrons in photonics.
诸如电子显微镜中使用的自由电子束,已发展成为强大的工具,通过分析电子能量损失和阴极发光来研究光子纳米结构,在空间和光谱精度方面具有无与伦比的组合。与超快光学相结合,超快电子显微镜这一新兴领域利用同步的飞秒电子和光脉冲照射被采样的结构,有望为材料和光场动力学研究带来亚埃-亚飞秒-亚兆电子伏特的同时空能量分辨率。此外,这些进展使人们能够以前所未有的方式操纵单个自由电子的波函数,为在纳米尺度探测和控制量子激发开辟了良好前景。在此,我们概述基于自由电子的光子学研究,并辅以原创的理论见解以及对若干具有启发性的挑战与机遇的讨论。特别地,我们表明,除了横向束密度分布的经典平均值外,单个电子的激发概率与其波函数无关,而两个或更多调制电子的概率则取决于它们的相对空间排列,从而反映出它们相互作用的量子性质。我们推导了体现这些结果的第一性原理解析表达式,这些表达式对任意形状的电子以及任何类型的电子 - 样品相互作用都具有普遍有效性。我们最后展望了各种令人兴奋的方向,包括用于无创光谱学和显微镜的颠覆性方法、在纳米尺度采样非线性光学响应的可能性、操纵与自由电子和光学样品模式相关的密度矩阵,以及在电子束光学调制方面的诱人应用,所有这些都有可能彻底改变自由电子在光子学中的应用。