Suppr超能文献

EPIC:基于洗脱轮廓的蛋白质复合物推断的软件工具包。

EPIC: software toolkit for elution profile-based inference of protein complexes.

机构信息

Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.

Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.

出版信息

Nat Methods. 2019 Aug;16(8):737-742. doi: 10.1038/s41592-019-0461-4. Epub 2019 Jul 15.

Abstract

Protein complexes are key macromolecular machines of the cell, but their description remains incomplete. We and others previously reported an experimental strategy for global characterization of native protein assemblies based on chromatographic fractionation of biological extracts coupled to precision mass spectrometry analysis (chromatographic fractionation-mass spectrometry, CF-MS), but the resulting data are challenging to process and interpret. Here, we describe EPIC (elution profile-based inference of complexes), a software toolkit for automated scoring of large-scale CF-MS data to define high-confidence multi-component macromolecules from diverse biological specimens. As a case study, we used EPIC to map the global interactome of Caenorhabditis elegans, defining 612 putative worm protein complexes linked to diverse biological processes. These included novel subunits and assemblies unique to nematodes that we validated using orthogonal methods. The open source EPIC software is freely available as a Jupyter notebook packaged in a Docker container (https://hub.docker.com/r/baderlab/bio-epic/).

摘要

蛋白质复合物是细胞的关键大分子机器,但它们的描述仍然不完整。我们和其他人之前报道了一种基于生物提取物的色谱分离结合精确质谱分析(色谱分离-质谱,CF-MS)对天然蛋白质复合物进行全局表征的实验策略,但得到的数据处理和解释具有挑战性。在这里,我们描述了 EPIC(基于洗脱曲线推断复合物),这是一个用于自动评分大规模 CF-MS 数据的软件工具包,用于从各种生物样本中定义高可信度的多成分大分子。作为一个案例研究,我们使用 EPIC 绘制了秀丽隐杆线虫的全局相互作用组图谱,定义了 612 个可能与不同生物过程相关的虫蛋白复合物。其中包括我们使用正交方法验证的新型线虫特有亚基和复合物。开源 EPIC 软件可作为一个 Jupyter 笔记本免费获得,并打包在一个 Docker 容器中(https://hub.docker.com/r/baderlab/bio-epic/)。

相似文献

6
Affinity purification of protein complexes in C. elegans.秀丽隐杆线虫中蛋白质复合物的亲和纯化。
Methods Cell Biol. 2011;106:289-322. doi: 10.1016/B978-0-12-544172-8.00011-6.

引用本文的文献

4
Recent Advances in Mass Spectrometry-Based Protein Interactome Studies.基于质谱的蛋白质相互作用组研究的最新进展
Mol Cell Proteomics. 2025 Jan;24(1):100887. doi: 10.1016/j.mcpro.2024.100887. Epub 2024 Nov 27.

本文引用的文献

1
Genomic data integration systematically biases interactome mapping.基因组数据整合系统地影响互作图谱绘制。
PLoS Comput Biol. 2018 Oct 17;14(10):e1006474. doi: 10.1371/journal.pcbi.1006474. eCollection 2018 Oct.
5
The BioGRID interaction database: 2017 update.生物通用互作数据库:2017年更新版。
Nucleic Acids Res. 2017 Jan 4;45(D1):D369-D379. doi: 10.1093/nar/gkw1102. Epub 2016 Dec 14.
7
Expansion of the Gene Ontology knowledgebase and resources.基因本体知识库及资源的扩展。
Nucleic Acids Res. 2017 Jan 4;45(D1):D331-D338. doi: 10.1093/nar/gkw1108. Epub 2016 Nov 29.
9
Bayesian Correlation Analysis for Sequence Count Data.贝叶斯序列计数数据分析。
PLoS One. 2016 Oct 4;11(10):e0163595. doi: 10.1371/journal.pone.0163595. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验