Reed Tavis J, Tyl Matthew D, Tadych Alicja, Troyanskaya Olga G, Cristea Ileana M
Lewis-Sigler Institute for Integrative Genomics, Princeton University, Carl Icahn Laboratory, Princeton, NJ, USA.
Department of Computer Science, Princeton University, Princeton, NJ, USA.
Nat Methods. 2024 Mar;21(3):488-500. doi: 10.1038/s41592-024-02179-9. Epub 2024 Feb 15.
Protein-protein interactions (PPIs) drive cellular processes and responses to environmental cues, reflecting the cellular state. Here we develop Tapioca, an ensemble machine learning framework for studying global PPIs in dynamic contexts. Tapioca predicts de novo interactions by integrating mass spectrometry interactome data from thermal/ion denaturation or cofractionation workflows with protein properties and tissue-specific functional networks. Focusing on the thermal proximity coaggregation method, we improved the experimental workflow. Finely tuned thermal denaturation afforded increased throughput, while cell lysis optimization enhanced protein detection from different subcellular compartments. The Tapioca workflow was next leveraged to investigate viral infection dynamics. Temporal PPIs were characterized during the reactivation from latency of the oncogenic Kaposi's sarcoma-associated herpesvirus. Together with functional assays, NUCKS was identified as a proviral hub protein, and a broader role was uncovered by integrating PPI networks from alpha- and betaherpesvirus infections. Altogether, Tapioca provides a web-accessible platform for predicting PPIs in dynamic contexts.
蛋白质-蛋白质相互作用(PPIs)驱动细胞过程并影响细胞对环境线索的反应,反映细胞状态。在此,我们开发了Tapioca,这是一个用于在动态环境中研究全局PPIs的集成机器学习框架。Tapioca通过将来自热/离子变性或共分级工作流程的质谱相互作用组数据与蛋白质特性和组织特异性功能网络相结合,预测全新的相互作用。聚焦于热邻近共聚集方法,我们改进了实验工作流程。精细调整的热变性提高了通量,而细胞裂解优化增强了来自不同亚细胞区室的蛋白质检测。接下来,利用Tapioca工作流程研究病毒感染动态。在致癌性卡波西肉瘤相关疱疹病毒从潜伏期重新激活期间,对时间性PPIs进行了表征。结合功能分析,NUCKS被鉴定为一种前病毒枢纽蛋白,通过整合来自α和β疱疹病毒感染的PPI网络,发现了其更广泛的作用。总之,Tapioca提供了一个可通过网络访问的平台,用于在动态环境中预测PPIs。