Suppr超能文献

木薯淀粉:一个用于预测动态环境中全新蛋白质-蛋白质相互作用的平台。

Tapioca: a platform for predicting de novo protein-protein interactions in dynamic contexts.

作者信息

Reed Tavis J, Tyl Matthew D, Tadych Alicja, Troyanskaya Olga G, Cristea Ileana M

机构信息

Lewis-Sigler Institute for Integrative Genomics, Princeton University, Carl Icahn Laboratory, Princeton, NJ, USA.

Department of Computer Science, Princeton University, Princeton, NJ, USA.

出版信息

Nat Methods. 2024 Mar;21(3):488-500. doi: 10.1038/s41592-024-02179-9. Epub 2024 Feb 15.

Abstract

Protein-protein interactions (PPIs) drive cellular processes and responses to environmental cues, reflecting the cellular state. Here we develop Tapioca, an ensemble machine learning framework for studying global PPIs in dynamic contexts. Tapioca predicts de novo interactions by integrating mass spectrometry interactome data from thermal/ion denaturation or cofractionation workflows with protein properties and tissue-specific functional networks. Focusing on the thermal proximity coaggregation method, we improved the experimental workflow. Finely tuned thermal denaturation afforded increased throughput, while cell lysis optimization enhanced protein detection from different subcellular compartments. The Tapioca workflow was next leveraged to investigate viral infection dynamics. Temporal PPIs were characterized during the reactivation from latency of the oncogenic Kaposi's sarcoma-associated herpesvirus. Together with functional assays, NUCKS was identified as a proviral hub protein, and a broader role was uncovered by integrating PPI networks from alpha- and betaherpesvirus infections. Altogether, Tapioca provides a web-accessible platform for predicting PPIs in dynamic contexts.

摘要

蛋白质-蛋白质相互作用(PPIs)驱动细胞过程并影响细胞对环境线索的反应,反映细胞状态。在此,我们开发了Tapioca,这是一个用于在动态环境中研究全局PPIs的集成机器学习框架。Tapioca通过将来自热/离子变性或共分级工作流程的质谱相互作用组数据与蛋白质特性和组织特异性功能网络相结合,预测全新的相互作用。聚焦于热邻近共聚集方法,我们改进了实验工作流程。精细调整的热变性提高了通量,而细胞裂解优化增强了来自不同亚细胞区室的蛋白质检测。接下来,利用Tapioca工作流程研究病毒感染动态。在致癌性卡波西肉瘤相关疱疹病毒从潜伏期重新激活期间,对时间性PPIs进行了表征。结合功能分析,NUCKS被鉴定为一种前病毒枢纽蛋白,通过整合来自α和β疱疹病毒感染的PPI网络,发现了其更广泛的作用。总之,Tapioca提供了一个可通过网络访问的平台,用于在动态环境中预测PPIs。

相似文献

1
Tapioca: a platform for predicting de novo protein-protein interactions in dynamic contexts.
Nat Methods. 2024 Mar;21(3):488-500. doi: 10.1038/s41592-024-02179-9. Epub 2024 Feb 15.
6
ARID3B: a Novel Regulator of the Kaposi's Sarcoma-Associated Herpesvirus Lytic Cycle.
J Virol. 2016 Sep 29;90(20):9543-55. doi: 10.1128/JVI.03262-15. Print 2016 Oct 15.
10
Kaposi's sarcoma: a computational approach through protein-protein interaction and gene regulatory networks analysis.
Virus Genes. 2013 Apr;46(2):242-54. doi: 10.1007/s11262-012-0865-z. Epub 2012 Dec 25.

引用本文的文献

2
Cell Mapping Toolkit: an end-to-end pipeline for mapping subcellular organization.
Bioinformatics. 2025 Jun 2;41(6). doi: 10.1093/bioinformatics/btaf205.
3
Multi-epitope immunocapture of huntingtin reveals striatum-selective molecular signatures.
Mol Syst Biol. 2025 May;21(5):492-522. doi: 10.1038/s44320-025-00096-3. Epub 2025 Apr 1.
4
Recent Advances in Mass Spectrometry-Based Protein Interactome Studies.
Mol Cell Proteomics. 2025 Jan;24(1):100887. doi: 10.1016/j.mcpro.2024.100887. Epub 2024 Nov 27.
5
Progress in mass spectrometry approaches to profiling protein-protein interactions in the studies of the innate immune system.
J Proteins Proteom. 2024 Sep;15(3):545-559. doi: 10.1007/s42485-024-00156-6. Epub 2024 Jun 28.
6
MGPPI: multiscale graph neural networks for explainable protein-protein interaction prediction.
Front Genet. 2024 Jul 15;15:1440448. doi: 10.3389/fgene.2024.1440448. eCollection 2024.
8
Mapping protein-protein interactions by mass spectrometry.
Mass Spectrom Rev. 2024 May 14. doi: 10.1002/mas.21887.
10
Differential Contributions of Interferon Classes to Host Inflammatory Responses and Restricting Virus Progeny Production.
J Proteome Res. 2024 Aug 2;23(8):3249-3268. doi: 10.1021/acs.jproteome.3c00826. Epub 2024 Apr 2.

本文引用的文献

1
Comparison of Quantitative Mass Spectrometric Methods for Drug Target Identification by Thermal Proteome Profiling.
J Proteome Res. 2023 Aug 4;22(8):2629-2640. doi: 10.1021/acs.jproteome.3c00111. Epub 2023 Jul 13.
2
Blood RNA alternative splicing events as diagnostic biomarkers for infectious disease.
Cell Rep Methods. 2023 Jan 12;3(2):100395. doi: 10.1016/j.crmeth.2023.100395. eCollection 2023 Feb 27.
3
CORUM: the comprehensive resource of mammalian protein complexes-2022.
Nucleic Acids Res. 2023 Jan 6;51(D1):D539-D545. doi: 10.1093/nar/gkac1015.
5
A TRUSTED targeted mass spectrometry assay for pan-herpesvirus protein detection.
Cell Rep. 2022 May 10;39(6):110810. doi: 10.1016/j.celrep.2022.110810.
6
Ion-Based Proteome-Integrated Solubility Alteration Assays for Systemwide Profiling of Protein-Molecule Interactions.
Anal Chem. 2022 May 17;94(19):7066-7074. doi: 10.1021/acs.analchem.2c00391. Epub 2022 May 4.
7
Proximity-Dependent Biotinylation Approaches to Explore the Dynamic Compartmentalized Proteome.
Front Mol Biosci. 2022 Mar 4;9:852911. doi: 10.3389/fmolb.2022.852911. eCollection 2022.
8
The reactome pathway knowledgebase 2022.
Nucleic Acids Res. 2022 Jan 7;50(D1):D687-D692. doi: 10.1093/nar/gkab1028.
9
The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences.
Nucleic Acids Res. 2022 Jan 7;50(D1):D543-D552. doi: 10.1093/nar/gkab1038.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验