Suppr超能文献

[I] 碘代苄胍(MIBG)心脏闪烁显像与帕金森病的自动分类技术。

[I]Metaiodobenzylguanidine (MIBG) Cardiac Scintigraphy and Automated Classification Techniques in Parkinsonian Disorders.

机构信息

Unit of Nuclear Medicine, Department of Medicine, Surgical and Experimental Science, University of Sassari, Viale San Pietro 8, 07100, Sassari, Italy.

Department of Engineering, University of Perugia, Perugia, Italy.

出版信息

Mol Imaging Biol. 2020 Jun;22(3):703-710. doi: 10.1007/s11307-019-01406-6.

Abstract

PURPOSE

To provide reliable and reproducible heart/mediastinum (H/M) ratio cut-off values for parkinsonian disorders using two machine learning techniques, Support Vector Machines (SVM) and Random Forest (RF) classifier, applied to [I]MIBG cardiac scintigraphy.

PROCEDURES

We studied 85 subjects, 50 with idiopathic Parkinson's disease, 26 with atypical Parkinsonian syndromes (P), and 9 with essential tremor (ET). All patients underwent planar early and delayed cardiac scintigraphy after [I]MIBG (111 MBq) intravenous injection. Images were evaluated both qualitatively and quantitatively; the latter by the early and delayed H/M ratio obtained from regions of interest (ROIt and ROIt) drawn on planar images. SVM and RF classifiers were finally used to obtain the correct cut-off value.

RESULTS

SVM and RF produced excellent classification performances: SVM classifier achieved perfect classification and RF also attained very good accuracy. The better cut-off for H/M value was 1.55 since it remains the same for both ROIt and ROIt This value allowed to correctly classify PD from P and ET: patients with H/M ratio less than 1.55 were classified as PD while those with values higher than 1.55 were considered as affected by parkinsonism and/or ET. No difference was found when early or late H/M ratio were considered separately thus suggesting that a single early evaluation could be sufficient to obtain the final diagnosis.

CONCLUSIONS

Our results evidenced that the use of SVM and CT permitted to define the better cut-off value for H/M ratios both in early and in delayed phase thus underlining the role of [I]MIBG cardiac scintigraphy and the effectiveness of H/M ratio in differentiating PD from other parkinsonism or ET. Moreover, early scans alone could be used for a reliable diagnosis since no difference was found between early and late. Definitely, a larger series of cases is needed to confirm this data.

摘要

目的

使用支持向量机(SVM)和随机森林(RF)分类器两种机器学习技术,为帕金森病患者提供可靠且可重复的心脏/纵隔(H/M)比值截止值,这些技术应用于碘[123I]-间位碘代苄胍(MIBG)心脏闪烁显像。

方法

我们研究了 85 名受试者,其中 50 名患有特发性帕金森病,26 名患有非典型帕金森综合征(P),9 名患有特发性震颤(ET)。所有患者在静脉注射[123I]-MIBG(111MBq)后进行平面早期和延迟心脏闪烁显像。图像进行定性和定量评估;后者通过从平面图像上绘制的感兴趣区(ROI 和 ROI)获得的早期和延迟 H/M 比值来获得。最后使用 SVM 和 RF 分类器获得正确的截止值。

结果

SVM 和 RF 产生了出色的分类性能:SVM 分类器实现了完美的分类,RF 也达到了非常高的准确性。最佳 H/M 值截止值为 1.55,因为它对于 ROI 和 ROI 都是相同的。该值可正确将 PD 与 P 和 ET 区分开来:H/M 比值小于 1.55 的患者被归类为 PD,而比值大于 1.55 的患者被认为患有帕金森病和/或 ET。当单独考虑早期或晚期 H/M 比值时没有发现差异,这表明仅进行一次早期评估就足以获得最终诊断。

结论

我们的结果表明,使用 SVM 和 CT 可以定义早期和延迟相 H/M 比值的最佳截止值,从而强调了碘[123I]-MIBG 心脏闪烁显像的作用以及 H/M 比值在区分 PD 与其他帕金森病或 ET 的有效性。此外,由于早期和晚期之间没有发现差异,因此仅使用早期扫描即可进行可靠诊断。当然,需要更大系列的病例来证实这些数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验