Suppr超能文献

双核镁酮酸还原异构酶的作用机制和抑制剂探索:靶向支链氨基酸的生物合成途径。

Mechanism and Inhibitor Exploration with Binuclear Mg Ketol-Acid Reductoisomerase: Targeting the Biosynthetic Pathway of Branched-Chain Amino Acids.

机构信息

Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.

出版信息

Chembiochem. 2020 Feb 3;21(3):381-391. doi: 10.1002/cbic.201900363. Epub 2019 Oct 24.

Abstract

Binuclear Mg ketol-acid reductoisomerase (KARI), which converts (S)-2-acetolactate into (R)-2,3-dihydroxyisovalerate, is responsible for the second step of the biosynthesis of branched-chain amino acids in plants and microorganisms and thus serves as a key inhibition target potentially without effects on mammals. Here, through the use of density functional calculations and a chemical model, the KARI-catalyzed reaction has been demonstrated to include the initial deprotonation of the substrate C2 hydroxy group, bridged by the two Mg ions, alkyl migration from the C2-alkoxide carbon atom to the C3-carbonyl carbon atom, and hydride transfer from a nicotinamide adenine dinucleotide phosphate [NAD(P)H] cofactor to C2. A dead-end mechanism with a hydride transferred to the C3 carbonyl group has been ruled out. The nucleophilicity (migratory aptitude) of the migrating carbon atom and the provision of additional negative charge to the di-Mg coordination sphere have significant effects on the steps of alkyl migration and hydride transfer, respectively. Other important mechanistic characteristics are also revealed. Inspired by the mechanism, an inhibitor (2-carboxylate-lactic acid) was designed and predicted by barrier analysis to be effective in inactivating KARI, hence probably enriching the antifungal and antibacterial library. Two types of slow substrate analogues (2-trihalomethyl acetolactic acids and 2-glutaryl lactic acid) were also found.

摘要

双核镁酮酸-醇还原异构酶(KARI)将(S)-2-乙酰乳酸转化为(R)-2,3-二羟基异戊酸,负责植物和微生物中支链氨基酸生物合成的第二步,因此可作为潜在的关键抑制靶标,而对哺乳动物没有影响。在这里,通过使用密度泛函计算和化学模型,证明了 KARI 催化的反应包括底物 C2 羟基的初始去质子化,由两个 Mg 离子桥接,烷基从 C2-烷氧基碳原子迁移到 C3-羰基碳原子,以及烟酰胺腺嘌呤二核苷酸磷酸[NAD(P)H]辅因子向 C2 的氢转移。已经排除了氢转移到 C3 羰基的末端机制。迁移碳原子的亲核性(迁移倾向)和向双 Mg 配位球提供额外负电荷对烷基迁移和氢转移步骤有显著影响。其他重要的机制特征也被揭示出来。受该机制的启发,设计了一种抑制剂(2-羧酸-乳酸),并通过势垒分析预测其对 KARI 的抑制作用有效,因此可能丰富了抗真菌和抗菌化合物库。还发现了两种类型的慢底物类似物(2-三卤代甲基乙酰乳酸和 2-谷氨酸乳酸)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验