Suppr超能文献

通过荧光显微镜研究单分子、单颗粒和单分子催化剂转化水平的有机和有机金属化学。

Organic and Organometallic Chemistry at the Single-Molecule, -Particle, and -Molecular-Catalyst-Turnover Level by Fluorescence Microscopy.

机构信息

Department of Chemistry , University of California , Irvine , California 92697-2025 , United States.

出版信息

Acc Chem Res. 2019 Aug 20;52(8):2244-2255. doi: 10.1021/acs.accounts.9b00219. Epub 2019 Jul 16.

Abstract

Mechanistic studies have historically played a key role in the discovery and optimization of reactions in organic and organometallic chemistry. However, even apparently simple organic and organometallic transformations may have surprisingly complicated multistep mechanisms, increasing the difficulty of extracting this mechanistic information. The resulting reaction intermediates often constitute a small fraction of the total reaction mixture, for example, creating a long-term analytical challenge of detection. This challenge is particularly pronounced in cases where the positions of intermediates on the reaction energy surface mean that they do not "build up" to the quantities needed for observation by traditional ensemble analytical tools. Thus, their existence and single-step elementary reactivity cannot be studied directly. New approaches for obtaining this otherwise-missing mechanistic information are therefore needed. Single-turnover, single-molecule, single-particle, and other subensemble fluorescence microscopy techniques are ideally suited for this role because of their sensitivity and spatiotemporal resolution. Inspired by the robust development of single-molecule fluorescence microscopy tools for studying enzyme catalysis, our laboratory has developed analogous fluorescence microscopy techniques to overcome mechanistic challenges in synthetic chemistry, with sensitivity as high as the single-complex, single-turnover, and single-molecule level. These techniques free the experimenter from the previous restriction that intermediates must "build up" to quantities needed for detection by ensemble analytical tools and are suited to systems where synchronization through flash photolysis or stopped flow would be inconvenient or inaccessible. In this process, the techniques transform certain previously "unobservable" intermediates and their elementary single-step reactivities into "observable" ones through sensitive and selective spectral handles. Our program has focused on imaging reactions in small-molecule, organic, and polymer synthetic chemistry with an accent on the reactivity of molecular transition metal complexes and catalysts. Our laboratory initiated studies in this area in 2008 with the imaging of individual palladium complexes that were tagged with spectator fluorophores. To enable imaging, we started with fluorophore selection and development, overcame challenges with imaging in organic solvents, and developed strategies compatible with air-sensitive chemistry and concentrations of reagents generally used in small-molecule synthesis. These studies grew to include characterization of previously unknown organometallic intermediates in the synthesis of organozinc reagents and the direct study of their elementary-step reactivity. The ability to directly observe this behavior generated predictive power for selecting salts that accelerated organozinc reagent formation in synthesis, including salts that had not yet been reported synthetically. In 2017 we also developed the first single-turnover imaging of molecular (chemo)catalysts, which through the technique's spatiotemporal resolution revealed abruptly time-variable polymerization kinetics wherein molecular ruthenium ring-opening metathesis polymerization (ROMP) catalysts changed rates independently from other catalysts less than 1 μm away. Individual catalytic turnovers, each corresponding to one single-chain-elongation reaction arising from insertion of single ROMP or enyne monomers at individual Grubbs II molecular ruthenium catalysts, were spatiotemporally resolved as green flashes in growing polymers. In this Account, we discuss the development of this technique from idea to application, including challenges overcome and strategies created to image synthetic organic and organometallic molecular chemistry at the highest levels of detection sensitivity. We also describe challenges not yet solved and provide an outlook for this growing field at the intersection of microscopy and synthetic/molecular chemistry.

摘要

机理研究在有机和金属有机化学中反应的发现和优化方面一直起着关键作用。然而,即使是看似简单的有机和金属有机转化也可能具有非常复杂的多步反应机理,这增加了提取这种机理信息的难度。由此产生的反应中间体通常只占总反应混合物的一小部分,例如,检测到它们长期存在的分析挑战。在中间体在反应能量表面上的位置意味着它们不会“积累”到传统整体分析工具观察所需的数量的情况下,这种挑战尤其明显。因此,不能直接研究它们的存在和单步基本反应性。因此,需要新的方法来获得这种缺失的机理信息。单转换、单分子、单粒子和其他子整体荧光显微镜技术由于其灵敏度和时空分辨率,非常适合这种作用。受单分子荧光显微镜工具在研究酶催化方面的稳健发展的启发,我们实验室开发了类似的荧光显微镜技术,以克服合成化学中的机理挑战,其灵敏度高达单复合物、单转换和单分子水平。这些技术使实验者摆脱了以前的限制,即中间体必须“积累”到通过整体分析工具检测所需的数量,并且适用于通过闪光光解或停止流动进行同步会不方便或无法访问的系统。在此过程中,该技术通过敏感和选择性的光谱处理将某些以前“不可观察”的中间体及其单步基本反应性转化为“可观察”的中间体。我们的计划专注于小分子、有机和聚合物合成化学中的反应成像,重点是分子过渡金属配合物和催化剂的反应性。我们实验室于 2008 年开始对标记有旁观荧光团的单个钯配合物进行成像研究。为了进行成像,我们从荧光团的选择和开发开始,克服了在有机溶剂中成像的挑战,并开发了与空气敏感化学和通常用于小分子合成的试剂浓度兼容的策略。这些研究发展包括在有机锌试剂的合成中对以前未知的金属有机中间体进行表征,并直接研究它们的基本反应性。直接观察这种行为的能力为选择在合成中加速有机锌试剂形成的盐提供了预测能力,包括尚未在合成中报道的盐。2017 年,我们还开发了第一个单转换分子(化学)催化剂成像,该技术的时空分辨率揭示了聚合动力学的突然时变,其中分子钌开环复分解聚合(ROMP)催化剂的速率独立于距离不到 1 µm 的其他催化剂而变化。单个催化周转,每个对应于单个 ROMP 或烯炔单体在单个 Grubbs II 分子钌催化剂处的插入引起的单链伸长反应,作为绿色闪光在生长聚合物中在时空上得到分辨。在本报告中,我们讨论了从想法到应用的该技术的发展,包括克服的挑战和为在最高检测灵敏度下对合成有机和金属有机分子化学进行成像而创建的策略。我们还描述了尚未解决的挑战,并为显微镜和合成/分子化学交叉领域的这一不断发展的领域提供了展望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验