Suppr超能文献

铜(I)催化条件下铋(III)乙炔化物与有机叠氮化物环加成活性的电化学研究

Electrochemical Studies of the Cycloaddition Activity of Bismuth(III) Acetylides Towards Organic Azides Under Copper(I)-Catalyzed Conditions.

作者信息

Nazarova Antonina L, Zayat Billal, Fokin Valery V, Narayan Sri R

机构信息

Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, United States.

Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States.

出版信息

Front Chem. 2022 Feb 25;10:830237. doi: 10.3389/fchem.2022.830237. eCollection 2022.

Abstract

Time-dependent monitoring of the reactive intermediates provides valuable information about the mechanism of a synthetic transformation. However, the process frequently involves intermediates with short lifetimes that significantly challenge the accessibility of the desired kinetic data. We report cyclic voltammetry (CV) and nuclear magnetic resonance (NMR) spectroscopy studies of the cycloaddition reaction of organobismuth(III) compounds with organic azides under the copper(I)-catalyzed conditions. A series of bismuth(III) acetylides carrying diphenyl sulfone scaffolds have been synthesized to study the underlying electronic and steric effects of the tethered moieties capable of transannular oxygen O···Bi interactions and -functionality of the parent phenylacetylene backbones. While belonging to the family of copper-catalyzed azide-alkyne cycloaddition reactions, the reaction yielding 5-bismuth(III)-triazolide is the sole example of a complex catalytic transformation that features activity of bismuth(III) acetylides towards organic azides under copper(I)-catalyzed conditions. Stepwise continuous monitoring of the copper(I)/copper(0) redox activity of the copper(I) catalyst by cyclic voltammetry provided novel insights into the complex catalytic cycle of the bismuth(III)-triazolide formation. From CV-derived kinetic data, reaction rate parameters of the bismuth(III) acetylides coordination to the copper(I) catalyst (K) and equilibrium concentration of the copper species [cat] are compared with the overall 5-bismuth(III)-triazolide formation rate constant k obtained by H-NMR kinetic analysis.

摘要

对反应中间体进行时间依赖性监测可提供有关合成转化机理的有价值信息。然而,该过程经常涉及寿命较短的中间体,这对获取所需的动力学数据构成了重大挑战。我们报道了在铜(I)催化条件下有机铋(III)化合物与有机叠氮化物环加成反应的循环伏安法(CV)和核磁共振(NMR)光谱研究。合成了一系列带有二苯砜支架的铋(III)乙炔化物,以研究能够进行跨环氧O···Bi相互作用的连接部分的潜在电子和空间效应以及母体苯乙炔主链的官能团。虽然属于铜催化的叠氮化物-炔烃环加成反应家族,但生成5-铋(III)-三唑化物的反应是复杂催化转化的唯一例子,其特点是在铜(I)催化条件下铋(III)乙炔化物对有机叠氮化物具有活性。通过循环伏安法对铜(I)催化剂的铜(I)/铜(0)氧化还原活性进行逐步连续监测,为铋(III)-三唑化物形成的复杂催化循环提供了新的见解。根据CV衍生的动力学数据,将铋(III)乙炔化物与铜(I)催化剂配位的反应速率参数(K)和铜物种的平衡浓度[cat]与通过1H-NMR动力学分析获得的整体5-铋(III)-三唑化物形成速率常数k进行比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/276e/9531323/37a7f8991cdb/fchem-10-830237-g001.jpg

相似文献

2
Copper(I)-catalyzed cycloaddition of bismuth(III) acetylides with organic azides: synthesis of stable triazole anion equivalents.
Angew Chem Int Ed Engl. 2013 Dec 2;52(49):13037-41. doi: 10.1002/anie.201306192. Epub 2013 Oct 15.
3
4
Dicopper Cu(I)Cu(I) and Cu(I)Cu(II) Complexes in Copper-Catalyzed Azide-Alkyne Cycloaddition.
J Am Chem Soc. 2017 Apr 19;139(15):5378-5386. doi: 10.1021/jacs.6b13261. Epub 2017 Apr 10.
5
Reaction of alkynes and azides: not triazoles through copper-acetylides but oxazoles through copper-nitrene intermediates.
Chemistry. 2014 Mar 17;20(12):3463-74. doi: 10.1002/chem.201303737. Epub 2014 Feb 24.
6
The mechanism of copper-catalyzed azide-alkyne cycloaddition reaction: a quantum mechanical investigation.
J Mol Graph Model. 2012 Apr;34:101-7. doi: 10.1016/j.jmgm.2011.12.012. Epub 2012 Jan 8.
7
On the Mechanism of Copper(I)-Catalyzed Azide-Alkyne Cycloaddition.
Chem Rec. 2016 Jun;16(3):1501-17. doi: 10.1002/tcr.201600002. Epub 2016 May 24.
8
From mechanism to mouse: a tale of two bioorthogonal reactions.
Acc Chem Res. 2011 Sep 20;44(9):666-76. doi: 10.1021/ar200148z. Epub 2011 Aug 15.
9
Direct evidence of a dinuclear copper intermediate in Cu(I)-catalyzed azide-alkyne cycloadditions.
Science. 2013 Apr 26;340(6131):457-60. doi: 10.1126/science.1229506. Epub 2013 Apr 4.
10
Mechanism of Copper(I)-Catalyzed 5-Iodo-1,2,3-triazole Formation from Azide and Terminal Alkyne.
J Org Chem. 2015 Oct 2;80(19):9542-51. doi: 10.1021/acs.joc.5b01536.

本文引用的文献

1
Fluorination of arylboronic esters enabled by bismuth redox catalysis.
Science. 2020 Jan 17;367(6475):313-317. doi: 10.1126/science.aaz2258.
2
Biocompatible, Crystalline, and Amorphous Bismuth-Based Metal-Organic Frameworks for Drug Delivery.
ACS Appl Mater Interfaces. 2020 Feb 5;12(5):5633-5641. doi: 10.1021/acsami.9b21692. Epub 2020 Jan 24.
3
A synthetic chemist's guide to electroanalytical tools for studying reaction mechanisms.
Chem Sci. 2019 May 23;10(26):6404-6422. doi: 10.1039/c9sc01545k. eCollection 2019 Jul 14.
4
Organic and Organometallic Chemistry at the Single-Molecule, -Particle, and -Molecular-Catalyst-Turnover Level by Fluorescence Microscopy.
Acc Chem Res. 2019 Aug 20;52(8):2244-2255. doi: 10.1021/acs.accounts.9b00219. Epub 2019 Jul 16.
5
Carbon monoxide insertion at a heavy p-block element: unprecedented formation of a cationic bismuth carbamoyl.
Chem Sci. 2019 Feb 28;10(15):4169-4176. doi: 10.1039/c9sc00278b. eCollection 2019 Apr 21.
6
C NMR Shifts as an Indicator of U-C Bond Covalency in Uranium(VI) Acetylide Complexes: An Experimental and Computational Study.
Inorg Chem. 2019 Apr 1;58(7):4152-4163. doi: 10.1021/acs.inorgchem.8b03175. Epub 2019 Mar 8.
7
Investigating the Role of Ligand Electronics on Stabilizing Electrocatalytically Relevant Low-Valent Co(I) Intermediates.
J Am Chem Soc. 2019 Jan 23;141(3):1382-1392. doi: 10.1021/jacs.8b12634. Epub 2019 Jan 11.
8
Determining the Origin of Rate-Independent Chemoselectivity in CuAAC Reactions: An Alkyne-Specific Shift in Rate-Determining Step.
Angew Chem Int Ed Engl. 2017 Mar 13;56(12):3314-3318. doi: 10.1002/anie.201612288. Epub 2017 Feb 16.
9
Copper-catalyzed [3 + 2] cycloaddition of (phenylethynyl)di-p-tolylstibane with organic azides.
Beilstein J Org Chem. 2016 Jun 23;12:1309-13. doi: 10.3762/bjoc.12.123. eCollection 2016.
10
Oxygen Reduction Catalysis at a Dicobalt Center: The Relationship of Faradaic Efficiency to Overpotential.
J Am Chem Soc. 2016 Mar 9;138(9):2925-8. doi: 10.1021/jacs.5b12828. Epub 2016 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验