Suppr超能文献

基于扫描电化学显微镜实时分析趋近曲线的纳米级智能成像。

Nanoscale Intelligent Imaging Based on Real-Time Analysis of Approach Curve by Scanning Electrochemical Microscopy.

机构信息

Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States.

Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering , University of Kansas , 1501 Wakarusa Drive , Lawrence , Kansas 66047 , United States.

出版信息

Anal Chem. 2019 Aug 6;91(15):10227-10235. doi: 10.1021/acs.analchem.9b02361. Epub 2019 Jul 29.

Abstract

Scanning electrochemical microscopy (SECM) enables high-resolution imaging by examining the amperometric response of an ultramicroelectrode tip near a substrate. Spatial resolution, however, is compromised for nonflat substrates, where distances from a tip far exceed the tip size to avoid artifacts caused by the tip-substrate contact. Herein, we propose a new imaging mode of SECM based on real-time analysis of the approach curve to actively control nanoscale tip-substrate distances without contact. The power of this software-based method is demonstrated by imaging an insulating substrate with step edges using standard instrumentation without combination of another method for distance measurement, e.g., atomic force microscopy. An ∼500 nm diameter Pt tip approaches down to ∼50 nm from upper and lower terraces of a 500 nm height step edge, which are located by real-time theoretical fitting of an experimental approach curve to ensure the lack of electrochemical reactivity. The tip approach to the step edge can be terminated at <20 nm prior to the tip-substrate contact as soon as the theory deviates from the tip current, which is analyzed numerically afterward to locate the inert edge. The advantageous local adjustment of tip height and tip current at the final point of tip approach distinguishes the proposed imaging mode from other modes based on standard instrumentation. In addition, the glass sheath of the Pt tip is thinned to ∼150 nm to rarely contact the step edge, which is unavoidable and instantaneously detected as an abrupt change in the slope of approach curve to prevent damage of the fragile nanotip.

摘要

扫描电化学显微镜(SECM)通过检查靠近基底的超微电极尖端的电流响应来实现高分辨率成像。然而,对于非平面基底,由于远离尖端的距离远远超过尖端尺寸,以避免由于尖端-基底接触而产生的伪影,因此空间分辨率受到影响。在此,我们提出了一种基于实时分析接近曲线的新 SECM 成像模式,该模式无需接触即可主动控制纳米级尖端-基底距离。该软件方法的强大功能通过使用标准仪器对具有阶跃边缘的绝缘基底进行成像来证明,而无需结合另一种距离测量方法(例如原子力显微镜)。使用标准仪器对具有阶跃边缘的绝缘基底进行成像来证明,而无需结合另一种距离测量方法(例如原子力显微镜)。使用标准仪器对具有阶跃边缘的绝缘基底进行成像来证明,而无需结合另一种距离测量方法(例如原子力显微镜)。使用标准仪器对具有阶跃边缘的绝缘基底进行成像来证明,而无需结合另一种距离测量方法(例如原子力显微镜)。使用标准仪器对具有阶跃边缘的绝缘基底进行成像来证明,而无需结合另一种距离测量方法(例如原子力显微镜)。使用标准仪器对具有阶跃边缘的绝缘基底进行成像来证明,而无需结合另一种距离测量方法(例如原子力显微镜)。使用标准仪器对具有阶跃边缘的绝缘基底进行成像来证明,而无需结合另一种距离测量方法(例如原子力显微镜)。使用标准仪器对具有阶跃边缘的绝缘基底进行成像来证明,而无需结合另一种距离测量方法(例如原子力显微镜)。一个约 500nm 直径的 Pt 尖端从高度为 500nm 的阶跃边缘的上和下梯田向下接近到约 50nm,通过实时理论拟合实验接近曲线来确保没有电化学活性。一旦理论偏离尖端电流,尖端就可以在尖端-基底接触之前终止到小于 20nm 的位置,之后对其进行数值分析以定位惰性边缘。在尖端接近的最后阶段,尖端高度和尖端电流的有利局部调整将所提出的成像模式与基于标准仪器的其他模式区分开来。此外,Pt 尖端的玻璃护套被减薄至约 150nm,以很少接触阶跃边缘,这是不可避免的,并且作为接近曲线斜率的突然变化而被即时检测,以防止脆弱的纳米尖端的损坏。

相似文献

本文引用的文献

4
Scanning electrochemical microscopy at the nanometer level.纳米级扫描电化学显微镜
Chem Commun (Camb). 2018 Feb 20;54(16):1934-1947. doi: 10.1039/c7cc09777h.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验