Center for Computational Quantum Chemistry, Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States.
J Chem Inf Model. 2019 Aug 26;59(8):3413-3421. doi: 10.1021/acs.jcim.9b00379. Epub 2019 Jul 31.
Predicting the strength of stacking interactions involving heterocycles is vital for several fields, including structure-based drug design. While quantum chemical computations can provide accurate stacking interaction energies, these come at a steep computational cost. To address this challenge, we recently developed quantitative predictive models of stacking interactions between druglike heterocycles and the aromatic amino acids Phe, Tyr, and Trp (DOI: 10.1021/jacs.9b00936 ). These models depend on heterocycle descriptors derived from electrostatic potentials (ESPs) computed using density functional theory and provide accurate stacking interactions without the need for expensive computations on stacked dimers. Herein, we show that these ESP-based descriptors can be reliably evaluated directly from the atom connectivity of the heterocycle, providing a means of predicting both the descriptors and the potential for a given heterocycle to engage in stacking interactions without resorting to any quantum chemical computations. This enables the rapid conversion of simple molecular representations (e.g., SMILES) directly into accurate stacking interaction energies using a freely available online tool, thereby providing a way to rank the stacking abilities of large sets of heterocycles.
预测涉及杂环的堆积相互作用的强度对于包括基于结构的药物设计在内的多个领域至关重要。虽然量子化学计算可以提供准确的堆积相互作用能,但这些计算的计算成本很高。为了解决这一挑战,我们最近开发了定量预测模型,用于预测类药性杂环与芳香族氨基酸 Phe、Tyr 和 Trp 之间的堆积相互作用(DOI:10.1021/jacs.9b00936)。这些模型依赖于基于静电势(ESP)的杂环描述符,这些描述符是使用密度泛函理论计算得出的,可提供准确的堆积相互作用,而无需对堆叠二聚体进行昂贵的计算。在此,我们表明,这些基于 ESP 的描述符可以直接从杂环的原子连接性中可靠地评估,从而提供了一种预测给定杂环参与堆积相互作用的潜力和描述符的方法,而无需诉诸任何量子化学计算。这使得可以使用免费的在线工具,将简单的分子表示(例如 SMILES)快速转换为准确的堆积相互作用能,从而为对大量杂环的堆积能力进行排序提供了一种方法。