Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.
Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
Am J Physiol Endocrinol Metab. 2019 Oct 1;317(4):E559-E572. doi: 10.1152/ajpendo.00036.2019. Epub 2019 Jul 16.
Nutrient sensing plays an important role in ensuring that appropriate digestive or hormonal responses are elicited following the ingestion of fuel substrates. Mechanisms of nutrient sensing in the oral cavity have been fairly well characterized and involve lingual taste receptors. These include heterodimers of G protein-coupled receptors (GPCRs) of the taste receptor type 1 (T1R) family for sensing sweet (T1R2-T1R3) and umami (T1R1-T1R3) stimuli, the T2R family for sensing bitter stimuli, and ion channels for conferring sour and salty tastes. In recent years, several studies have revealed the existence of additional nutrient-sensing mechanisms along the gastrointestinal tract. Glucose sensing is achieved by the T1R2-T1R3 heterodimer on enteroendocrine cells, which plays a role in triggering the secretion of incretin hormones for improved glycemic and lipemic control. Protein hydrolysates are detected by Ca-sensing receptor, the T1R1-T1R3 heterodimer, and G protein-coupled receptor 92/93 (GPR92/93), which leads to the release of the gut-derived satiety factor cholecystokinin. Furthermore, several GPCRs have been implicated in fatty acid sensing: GPR40 and GPR120 respond to medium- and long-chain fatty acids, GPR41 and GPR43 to short-chain fatty acids, and GPR119 to endogenous lipid derivatives. Aside from the recognition of fuel substrates, both the oral cavity and the gastrointestinal tract also possess T2R-mediated mechanisms of recognizing nonnutrients such as environmental contaminants, bacterial toxins, and secondary plant metabolites that evoke a bitter taste. These gastrointestinal sensing mechanisms result in the transmission of neuronal signals to the brain through the release of gastrointestinal hormones that act on vagal and enteric afferents to modulate the physiological response to nutrients, particularly satiety and energy homeostasis. Modulating these orally accessible nutrient-sensing pathways using particular foods, dietary supplements, or pharmaceutical compounds may have therapeutic potential for treating obesity and metabolic diseases.
营养感应在确保摄入燃料基质后引发适当的消化或激素反应方面发挥着重要作用。口腔中的营养感应机制已经得到了相当充分的描述,涉及舌味觉受体。这些受体包括味觉受体类型 1(T1R)家族的 G 蛋白偶联受体(GPCR)异二聚体,用于感知甜味(T1R2-T1R3)和鲜味(T1R1-T1R3)刺激,T2R 家族用于感知苦味刺激,以及离子通道赋予酸味和咸味。近年来,几项研究揭示了胃肠道中存在其他营养感应机制。肠内分泌细胞上的 T1R2-T1R3 异二聚体实现了葡萄糖感应,在触发肠促胰岛素激素的分泌以改善血糖和血脂控制方面发挥作用。钙感应受体、T1R1-T1R3 异二聚体和 G 蛋白偶联受体 92/93(GPR92/93)检测蛋白质水解物,导致肠道来源的饱腹感因子胆囊收缩素的释放。此外,几种 GPCR 被牵连到脂肪酸感应中:GPR40 和 GPR120 对中链和长链脂肪酸有反应,GPR41 和 GPR43 对短链脂肪酸有反应,GPR119 对内源性脂质衍生物有反应。除了识别燃料基质外,口腔和胃肠道还具有 T2R 介导的机制来识别非营养物质,如环境污染物、细菌毒素和次级植物代谢物,这些物质会引起苦味。这些胃肠道感应机制通过释放作用于迷走神经和肠传入纤维的胃肠激素,将神经元信号传递到大脑,从而调节对营养物质的生理反应,特别是饱腹感和能量平衡。通过使用特定的食物、膳食补充剂或药物化合物来调节这些可口服的营养感应途径,可能对治疗肥胖症和代谢疾病具有治疗潜力。