Suppr超能文献

一种快速的机器学习方法,有助于在头皮脑电图中检测到发作间期癫痫样放电。

A fast machine learning approach to facilitate the detection of interictal epileptiform discharges in the scalp electroencephalogram.

机构信息

Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore 639798, Singapore.

Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore 639798, Singapore; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Cambridge, MA, USA.

出版信息

J Neurosci Methods. 2019 Oct 1;326:108362. doi: 10.1016/j.jneumeth.2019.108362. Epub 2019 Jul 13.

Abstract

BACKGROUND

Finding interictal epileptiform discharges (IEDs) in the EEG is a part of diagnosing epilepsy. Automated software for annotating EEGs of patients with suspected epilepsy can therefore help with reaching a diagnosis. A large amount of data is required for training and evaluating an effective IED detection system. IEDs occur infrequently in the most patients' EEG, therefore, interictal EEG recordings contain mostly background waveforms.

NEW METHOD

As the first step to detect IEDs, we propose a machine learning technique eliminating most EEG background data using an ensemble of simple fast classifiers based on several EEG features. This could save computation time for an IED detection method, allowing the remaining waveforms to be classified by more computationally intensive methods. We consider several efficient features and reject background by applying thresholds on them in consecutive steps.

RESULTS

We applied the proposed algorithm on a dataset of 156 EEGs (93 and 63 with and without IEDs, respectively). We were able to eliminate 78% of background waveforms while retaining 97% of IEDs on our cross-validated dataset.

COMPARISON WITH EXISTING METHODS

We applied support vector machine, k-nearest neighbours, and random forest classifiers to detect IEDs with and without initial background rejection. Results show that rejecting background by our proposed method speeds up the overall classification by a factor ranging from 1.8 to 4.7 for the considered classifiers.

CONCLUSIONS

The proposed method successfully reduces computation time of an IED detection system. Therefore, it is beneficial in speeding up IED detection especially when utilizing large EEG datasets.

摘要

背景

在 EEG 中发现癫痫发作间期放电(IEDs)是诊断癫痫的一部分。因此,用于标注疑似癫痫患者 EEG 的自动化软件可以帮助做出诊断。训练和评估有效的 IED 检测系统需要大量数据。大多数患者的 EEG 中 IEDs 发生频率较低,因此,发作间期 EEG 记录主要包含背景波形。

新方法

作为检测 IEDs 的第一步,我们提出了一种机器学习技术,使用基于几个 EEG 特征的简单快速分类器集合来消除大多数 EEG 背景数据。这可以为 IED 检测方法节省计算时间,允许使用更复杂的方法对剩余的波形进行分类。我们考虑了几种高效的特征,并通过在连续步骤中对它们应用阈值来拒绝背景。

结果

我们将所提出的算法应用于 156 个 EEG 数据集(分别有 93 个和 63 个有和没有 IEDs)。在我们的交叉验证数据集中,我们能够消除 78%的背景波形,同时保留 97%的 IEDs。

与现有方法的比较

我们应用支持向量机、k-最近邻和随机森林分类器来检测有和没有初始背景拒绝的 IEDs。结果表明,我们提出的方法通过拒绝背景可以使考虑到的分类器的整体分类速度提高 1.8 到 4.7 倍。

结论

所提出的方法成功地减少了 IED 检测系统的计算时间。因此,它有利于加快 IED 检测速度,特别是在利用大型 EEG 数据集时。

相似文献

4
Machine learning for detection of interictal epileptiform discharges.机器学习在痫性放电检测中的应用。
Clin Neurophysiol. 2021 Jul;132(7):1433-1443. doi: 10.1016/j.clinph.2021.02.403. Epub 2021 Apr 21.
9
FAST AND EFFICIENT REJECTION OF BACKGROUND WAVEFORMS IN INTERICTAL EEG.发作间期脑电图中背景波形的快速高效剔除
Proc IEEE Int Conf Acoust Speech Signal Process. 2016 Mar;2016:744-748. doi: 10.1109/ICASSP.2016.7471774. Epub 2016 May 19.

本文引用的文献

1
CLASSIFIER CASCADE TO AID IN DETECTION OF EPILEPTIFORM TRANSIENTS IN INTERICTAL EEG.用于辅助检测发作间期脑电图中癫痫样瞬变的分类器级联
Proc IEEE Int Conf Acoust Speech Signal Process. 2018 Apr;2018:970-974. doi: 10.1109/ICASSP.2018.8461992. Epub 2018 Sep 13.
3
Automated spike detection in EEG.脑电图中的自动尖峰检测
Clin Neurophysiol. 2017 Jan;128(1):241-242. doi: 10.1016/j.clinph.2016.11.018. Epub 2016 Nov 28.
7
Incidental epileptiform discharges in patients of a tertiary centre.三级医疗中心患者的偶发性癫痫样放电
Clin Neurophysiol. 2016 Jan;127(1):102-107. doi: 10.1016/j.clinph.2015.02.056. Epub 2015 Mar 6.
8
Model-based spike detection of epileptic EEG data.基于模型的癫痫脑电数据的尖峰检测。
Sensors (Basel). 2013 Sep 17;13(9):12536-47. doi: 10.3390/s130912536.
9
Inter-ictal spike detection using a database of smart templates.利用智能模板数据库进行发作间期棘波检测。
Clin Neurophysiol. 2013 Dec;124(12):2328-35. doi: 10.1016/j.clinph.2013.05.019. Epub 2013 Jun 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验