Suppr超能文献

一种快速的机器学习方法,有助于在头皮脑电图中检测到发作间期癫痫样放电。

A fast machine learning approach to facilitate the detection of interictal epileptiform discharges in the scalp electroencephalogram.

机构信息

Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore 639798, Singapore.

Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore 639798, Singapore; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Cambridge, MA, USA.

出版信息

J Neurosci Methods. 2019 Oct 1;326:108362. doi: 10.1016/j.jneumeth.2019.108362. Epub 2019 Jul 13.

Abstract

BACKGROUND

Finding interictal epileptiform discharges (IEDs) in the EEG is a part of diagnosing epilepsy. Automated software for annotating EEGs of patients with suspected epilepsy can therefore help with reaching a diagnosis. A large amount of data is required for training and evaluating an effective IED detection system. IEDs occur infrequently in the most patients' EEG, therefore, interictal EEG recordings contain mostly background waveforms.

NEW METHOD

As the first step to detect IEDs, we propose a machine learning technique eliminating most EEG background data using an ensemble of simple fast classifiers based on several EEG features. This could save computation time for an IED detection method, allowing the remaining waveforms to be classified by more computationally intensive methods. We consider several efficient features and reject background by applying thresholds on them in consecutive steps.

RESULTS

We applied the proposed algorithm on a dataset of 156 EEGs (93 and 63 with and without IEDs, respectively). We were able to eliminate 78% of background waveforms while retaining 97% of IEDs on our cross-validated dataset.

COMPARISON WITH EXISTING METHODS

We applied support vector machine, k-nearest neighbours, and random forest classifiers to detect IEDs with and without initial background rejection. Results show that rejecting background by our proposed method speeds up the overall classification by a factor ranging from 1.8 to 4.7 for the considered classifiers.

CONCLUSIONS

The proposed method successfully reduces computation time of an IED detection system. Therefore, it is beneficial in speeding up IED detection especially when utilizing large EEG datasets.

摘要

背景

在 EEG 中发现癫痫发作间期放电(IEDs)是诊断癫痫的一部分。因此,用于标注疑似癫痫患者 EEG 的自动化软件可以帮助做出诊断。训练和评估有效的 IED 检测系统需要大量数据。大多数患者的 EEG 中 IEDs 发生频率较低,因此,发作间期 EEG 记录主要包含背景波形。

新方法

作为检测 IEDs 的第一步,我们提出了一种机器学习技术,使用基于几个 EEG 特征的简单快速分类器集合来消除大多数 EEG 背景数据。这可以为 IED 检测方法节省计算时间,允许使用更复杂的方法对剩余的波形进行分类。我们考虑了几种高效的特征,并通过在连续步骤中对它们应用阈值来拒绝背景。

结果

我们将所提出的算法应用于 156 个 EEG 数据集(分别有 93 个和 63 个有和没有 IEDs)。在我们的交叉验证数据集中,我们能够消除 78%的背景波形,同时保留 97%的 IEDs。

与现有方法的比较

我们应用支持向量机、k-最近邻和随机森林分类器来检测有和没有初始背景拒绝的 IEDs。结果表明,我们提出的方法通过拒绝背景可以使考虑到的分类器的整体分类速度提高 1.8 到 4.7 倍。

结论

所提出的方法成功地减少了 IED 检测系统的计算时间。因此,它有利于加快 IED 检测速度,特别是在利用大型 EEG 数据集时。

相似文献

1
A fast machine learning approach to facilitate the detection of interictal epileptiform discharges in the scalp electroencephalogram.
J Neurosci Methods. 2019 Oct 1;326:108362. doi: 10.1016/j.jneumeth.2019.108362. Epub 2019 Jul 13.
3
Improving automated diagnosis of epilepsy from EEGs beyond IEDs.
J Neural Eng. 2022 Nov 24;19(6). doi: 10.1088/1741-2552/ac9c93.
4
Machine learning for detection of interictal epileptiform discharges.
Clin Neurophysiol. 2021 Jul;132(7):1433-1443. doi: 10.1016/j.clinph.2021.02.403. Epub 2021 Apr 21.
5
Towards fast and reliable simultaneous EEG-fMRI analysis of epilepsy with automatic spike detection.
Clin Neurophysiol. 2019 Mar;130(3):368-378. doi: 10.1016/j.clinph.2018.11.024. Epub 2018 Dec 17.
6
EEG CLassification Via Convolutional Neural Network-Based Interictal Epileptiform Event Detection.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:3148-3151. doi: 10.1109/EMBC.2018.8512930.
8
Analysis of EEG-fMRI data in focal epilepsy based on automated spike classification and Signal Space Projection.
Neuroimage. 2006 Jul 1;31(3):1015-24. doi: 10.1016/j.neuroimage.2006.01.040. Epub 2006 Mar 20.
9
FAST AND EFFICIENT REJECTION OF BACKGROUND WAVEFORMS IN INTERICTAL EEG.
Proc IEEE Int Conf Acoust Speech Signal Process. 2016 Mar;2016:744-748. doi: 10.1109/ICASSP.2016.7471774. Epub 2016 May 19.

引用本文的文献

1
Annotating neurophysiologic data at scale with optimized human input.
J Neural Eng. 2025 Jul 3;22(4). doi: 10.1088/1741-2552/ade402.
2
Innovating pediatric epilepsy: transforming diagnosis and treatment with AI.
World J Pediatr. 2025 May 4. doi: 10.1007/s12519-025-00904-8.
4
Applications and Techniques for Fast Machine Learning in Science.
Front Big Data. 2022 Apr 12;5:787421. doi: 10.3389/fdata.2022.787421. eCollection 2022.
5
Foundations of Time Series Analysis.
Acta Neurochir Suppl. 2022;134:215-220. doi: 10.1007/978-3-030-85292-4_25.

本文引用的文献

1
CLASSIFIER CASCADE TO AID IN DETECTION OF EPILEPTIFORM TRANSIENTS IN INTERICTAL EEG.
Proc IEEE Int Conf Acoust Speech Signal Process. 2018 Apr;2018:970-974. doi: 10.1109/ICASSP.2018.8461992. Epub 2018 Sep 13.
2
Interictal epileptiform discharge characteristics underlying expert interrater agreement.
Clin Neurophysiol. 2017 Oct;128(10):1994-2005. doi: 10.1016/j.clinph.2017.06.252. Epub 2017 Jul 18.
3
Automated spike detection in EEG.
Clin Neurophysiol. 2017 Jan;128(1):241-242. doi: 10.1016/j.clinph.2016.11.018. Epub 2016 Nov 28.
4
Spike detection: Inter-reader agreement and a statistical Turing test on a large data set.
Clin Neurophysiol. 2017 Jan;128(1):243-250. doi: 10.1016/j.clinph.2016.11.005. Epub 2016 Nov 14.
5
Characteristics of EEG Interpreters Associated With Higher Interrater Agreement.
J Clin Neurophysiol. 2017 Mar;34(2):168-173. doi: 10.1097/WNP.0000000000000344.
6
Rapid annotation of interictal epileptiform discharges via template matching under Dynamic Time Warping.
J Neurosci Methods. 2016 Dec 1;274:179-190. doi: 10.1016/j.jneumeth.2016.02.025. Epub 2016 Mar 2.
7
Incidental epileptiform discharges in patients of a tertiary centre.
Clin Neurophysiol. 2016 Jan;127(1):102-107. doi: 10.1016/j.clinph.2015.02.056. Epub 2015 Mar 6.
8
Model-based spike detection of epileptic EEG data.
Sensors (Basel). 2013 Sep 17;13(9):12536-47. doi: 10.3390/s130912536.
9
Inter-ictal spike detection using a database of smart templates.
Clin Neurophysiol. 2013 Dec;124(12):2328-35. doi: 10.1016/j.clinph.2013.05.019. Epub 2013 Jun 20.
10
Supply and demand analysis of the current and future US neurology workforce.
Neurology. 2013 Jul 30;81(5):470-8. doi: 10.1212/WNL.0b013e318294b1cf. Epub 2013 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验