Suppr超能文献

用于辅助检测发作间期脑电图中癫痫样瞬变的分类器级联

CLASSIFIER CASCADE TO AID IN DETECTION OF EPILEPTIFORM TRANSIENTS IN INTERICTAL EEG.

作者信息

Bagheri Elham, Jin Jing, Dauwels Justin, Cash Sydney, Westover M Brandon

机构信息

Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore 639798.

Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; and Harvard Medical School, Cambridge, MA, USA.

出版信息

Proc IEEE Int Conf Acoust Speech Signal Process. 2018 Apr;2018:970-974. doi: 10.1109/ICASSP.2018.8461992. Epub 2018 Sep 13.

Abstract

The presence of Epileptiform Transients (ET) in the electroencephalogram (EEG) is a key finding in the medical workup of a patient with suspected epilepsy. Automated ET detection can increase the uniformity and speed of ET detection. Current ET detection methods suffer from insufficient precision and high false positive rates. Since ETs occur infrequently in the EEG of most patients, the majority of recordings comprise background EEG waveforms. In this work we establish a method to exclude as much background data as possible from EEG recordings by applying a classifier cascade. The remaining data can then be classified using other ET detection methods. We compare a single Support Vector Machine (SVM) to a cascade of SVMs for detecting ETs. Our results show that the precision and false positive rate improve significantly by incorporating a classifier cascade before ET detection. Our method can help improve the precision and false positive rate of an ET detection system. At a fixed sensitivity, we were able to improve precision by 6.78%; and at a fixed false positive rate, the sensitivity improved by 2.83%.

摘要

脑电图(EEG)中癫痫样瞬变(ET)的出现是疑似癫痫患者医学检查的关键发现。自动ET检测可以提高ET检测的一致性和速度。当前的ET检测方法存在精度不足和假阳性率高的问题。由于大多数患者的脑电图中ET出现频率较低,大多数记录包含背景脑电波形。在这项工作中,我们建立了一种方法,通过应用分类器级联从脑电图记录中排除尽可能多的背景数据。然后可以使用其他ET检测方法对剩余数据进行分类。我们将单个支持向量机(SVM)与SVM级联用于检测ET进行了比较。我们的结果表明,在ET检测之前加入分类器级联可以显著提高精度和降低假阳性率。我们的方法有助于提高ET检测系统的精度和降低假阳性率。在固定灵敏度下,我们能够将精度提高6.78%;在固定假阳性率下,灵敏度提高了2.83%。

相似文献

1
CLASSIFIER CASCADE TO AID IN DETECTION OF EPILEPTIFORM TRANSIENTS IN INTERICTAL EEG.用于辅助检测发作间期脑电图中癫痫样瞬变的分类器级联
Proc IEEE Int Conf Acoust Speech Signal Process. 2018 Apr;2018:970-974. doi: 10.1109/ICASSP.2018.8461992. Epub 2018 Sep 13.
3
FAST AND EFFICIENT REJECTION OF BACKGROUND WAVEFORMS IN INTERICTAL EEG.发作间期脑电图中背景波形的快速高效剔除
Proc IEEE Int Conf Acoust Speech Signal Process. 2016 Mar;2016:744-748. doi: 10.1109/ICASSP.2016.7471774. Epub 2016 May 19.
4
A boosted cascade for efficient epileptic seizure detection.一种用于高效癫痫发作检测的增强级联。
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:6309-12. doi: 10.1109/EMBC.2013.6610996.

本文引用的文献

1
FAST AND EFFICIENT REJECTION OF BACKGROUND WAVEFORMS IN INTERICTAL EEG.发作间期脑电图中背景波形的快速高效剔除
Proc IEEE Int Conf Acoust Speech Signal Process. 2016 Mar;2016:744-748. doi: 10.1109/ICASSP.2016.7471774. Epub 2016 May 19.
3
Automated spike detection in EEG.脑电图中的自动尖峰检测
Clin Neurophysiol. 2017 Jan;128(1):241-242. doi: 10.1016/j.clinph.2016.11.018. Epub 2016 Nov 28.
6
Incidental epileptiform discharges in patients of a tertiary centre.三级医疗中心患者的偶发性癫痫样放电
Clin Neurophysiol. 2016 Jan;127(1):102-107. doi: 10.1016/j.clinph.2015.02.056. Epub 2015 Mar 6.
8
Model-based spike detection of epileptic EEG data.基于模型的癫痫脑电数据的尖峰检测。
Sensors (Basel). 2013 Sep 17;13(9):12536-47. doi: 10.3390/s130912536.
9
Inter-ictal spike detection using a database of smart templates.利用智能模板数据库进行发作间期棘波检测。
Clin Neurophysiol. 2013 Dec;124(12):2328-35. doi: 10.1016/j.clinph.2013.05.019. Epub 2013 Jun 20.
10
Automated quantification of spikes.自动尖峰量化。
Epilepsy Behav. 2013 Feb;26(2):143-52. doi: 10.1016/j.yebeh.2012.11.048. Epub 2013 Jan 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验