a Departamento de Biotecnologia, Escola de Engenharia de Lorena (EEL), Universidade de São Paulo , Lorena , Brazil.
b Department of Bioprocess Engineering and Biotechnology-COEBB/TD, Universidade Tecnológica Federal do Paraná , Toledo , Brazil.
Crit Rev Biotechnol. 2019 Nov;39(7):924-943. doi: 10.1080/07388551.2019.1640658. Epub 2019 Jul 16.
Recent advances in biomass conversion technologies have shown a promising future toward fermentation during xylitol production. Xylitol is one of the top 12 renewable added-value chemicals that can be obtained from biomass according to US Department of Energy (USDOE). Currently, xylitol accounts for approximately US$823.6 million of annual sales in the market, and this amount is expected to reach US$1.37 billion by 2025. This high demand has been achieved owing to the chemical conversion of hemicellulosic hydrolysates from different lignocellulosic biomasses, which is a costly and non-ecofriendly process. Xylose-rich hemicellulosic hydrolysates are the major raw materials for xylitol production through either chemical or biotechnological routes. Economic production of a clean hemicellulosic hydrolysate is one of the major bottlenecks for xylitol production on the commercial scale. Advancements in biotechnology, such as the isolation of novel microorganisms, genetic manipulation of xylose metabolizing strains, and modifications in the fermentation process, can enhance the economic feasibility of xylitol production on the large scale. Furthermore, xylitol production in integrated biorefineries can be even more economic, given the readily available raw materials and the co-use of steam, electricity, and water, among others. Exploring new biotechnology techniques in integrated biorefineries would open new markets and opportunities for sustainable xylitol production to fulfill the market's growing demands for this sugar alcohol. This article is a review of the advancements reported in the whole biotechnological process for xylitol production, and involve pretreatment technologies, hemicellulosic hydrolysate preparation, xylose conversion into xylitol, and product recovery. Special attention is devoted to current metabolic engineering strategies to improve this bioprocess, as well as to the importance of xylitol production processes in biorefineries.
生物质转化技术的最新进展表明,在木糖醇生产过程中发酵具有广阔的前景。木糖醇是美国能源部(USDOE)确定的 12 种可再生高附加值化学品之一,可以从生物质中获得。目前,木糖醇在市场上的年销售额约为 8.236 亿美元,预计到 2025 年将达到 13.7 亿美元。这种高需求是通过对不同木质纤维素生物质的半纤维素水解物进行化学转化实现的,而这种方法成本高且不环保。富含木糖的半纤维素水解物是通过化学或生物技术路线生产木糖醇的主要原料。清洁的半纤维素水解物的经济生产是木糖醇在商业规模上生产的主要瓶颈之一。生物技术的进步,如新型微生物的分离、木糖代谢菌株的遗传操作以及发酵过程的改进,可以提高大规模生产木糖醇的经济可行性。此外,在集成生物炼制厂中生产木糖醇甚至可以更具经济性,因为有现成的原料,并且可以共同使用蒸汽、电力和水等。在集成生物炼制厂中探索新的生物技术技术将为可持续木糖醇生产开辟新的市场和机会,以满足市场对这种糖醇日益增长的需求。本文综述了木糖醇生产全生物技术过程中的最新进展,涉及预处理技术、半纤维素水解物的制备、木糖转化为木糖醇以及产物回收。特别关注当前代谢工程策略对该生物过程的改进,以及木糖醇生产过程在生物炼制厂中的重要性。