Department of Biostatistics, UNC at Chapel Hill, Chapel Hill, North Carolina.
Merck & Co., Inc., North Wales, Pennsylvania.
Stat Med. 2019 Sep 30;38(22):4378-4389. doi: 10.1002/sim.8304. Epub 2019 Jul 17.
Analyzing safety data from clinical trials to detect safety signals worth further examination involves testing multiple hypotheses, one for each observed adverse event (AE) type. There exists certain hierarchical structure for these hypotheses due to the classification of the AEs into system organ classes, and these AEs are also likely correlated. Many approaches have been proposed to identify safety signals under the multiple testing framework and tried to achieve control of false discovery rate (FDR). The FDR control concerns the expectation of the false discovery proportion (FDP). In practice, the control of the actual random variable FDP could be more relevant and has recently drawn much attention. In this paper, we proposed a two-stage procedure for safety signal detection with direct control of FDP, through a permutation-based approach for screening groups of AEs and a permutation-based approach of constructing simultaneous upper bounds for false discovery proportion. Our simulation studies showed that this new approach has controlled FDP. We demonstrate our approach using data sets derived from a drug clinical trial.
从临床试验中分析安全性数据以检测值得进一步检查的安全性信号,需要对每个观察到的不良事件 (AE) 类型进行多次假设检验。由于 AEs 被分类为系统器官类别,因此这些假设之间存在一定的层次结构,并且这些 AEs 也可能相关。已经提出了许多方法来在多重测试框架下识别安全性信号,并尝试实现对假发现率 (FDR) 的控制。FDR 控制涉及假发现比例 (FDP) 的预期。在实践中,实际随机变量 FDP 的控制可能更为相关,并且最近引起了广泛关注。在本文中,我们提出了一种两阶段程序,通过基于排列的方法筛选 AE 组和基于排列的方法构建虚假发现比例的同时上限,直接控制 FDP 进行安全性信号检测。我们的模拟研究表明,这种新方法控制了 FDP。我们使用从药物临床试验中得出的数据集演示了我们的方法。