Xia H Amy, Ma Haijun, Carlin Bradley P
Amgen, Inc., Thousand Oaks, California 91320, USA.
J Biopharm Stat. 2011 Sep;21(5):1006-29. doi: 10.1080/10543406.2010.520181.
Detection of safety signals from clinical trial adverse event data is critical in drug development, but carries a challenging statistical multiplicity problem. Bayesian hierarchical mixture modeling is appealing for its ability to borrow strength across subgroups in the data, as well as moderate extreme findings most likely due merely to chance. We implement such a model for subject incidence (Berry and Berry, 2004 ) using a binomial likelihood, and extend it to subject-year adjusted incidence rate estimation under a Poisson likelihood. We use simulation to choose a signal detection threshold, and illustrate some effective graphics for displaying the flagged signals.
从临床试验不良事件数据中检测安全信号在药物研发中至关重要,但存在具有挑战性的统计多重性问题。贝叶斯分层混合模型因其能够在数据中的亚组间借用优势以及缓和极有可能仅由偶然因素导致的极端结果的能力而颇具吸引力。我们使用二项似然为受试者发病率实现这样一个模型(Berry和Berry,2004),并将其扩展到在泊松似然下估计受试者年调整发病率。我们通过模拟来选择信号检测阈值,并展示一些用于显示标记信号的有效图形。