Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
Angew Chem Int Ed Engl. 2019 Nov 11;58(46):16400-16404. doi: 10.1002/anie.201905333. Epub 2019 Aug 21.
Herein we report the discovery of a Au -DNA hybrid catalyst that is compatible with biological media and whose reactivity can be regulated by small complementary nucleic acid sequences. The development of this catalytic system was enabled by the discovery of a novel Au -mediated base pair. We found that Au binds DNA containing C-T mismatches. In the Au -DNA catalyst's latent state, the Au ion is sequestered by the mismatch such that it is coordinatively saturated, rendering it catalytically inactive. Upon addition of an RNA or DNA strand that is complementary to the latent catalyst's oligonucleotide backbone, catalytic activity is induced, leading to a sevenfold increase in the formation of a fluorescent product, forged through a Au -catalyzed hydroamination reaction. Further development of this catalytic system will expand not only the chemical space available to synthetic biological systems but also allow for temporal and spatial control of transition-metal catalysis through gene transcription.
在这里,我们报告了一种 Au-DNA 杂化催化剂的发现,该催化剂与生物介质兼容,其反应性可以通过小的互补核酸序列来调节。该催化系统的开发得益于一种新型的 Au 介导的碱基对的发现。我们发现 Au 与含有 C-T 错配的 DNA 结合。在 Au-DNA 催化剂的潜伏状态下,Au 离子被错配所隔离,从而使其配位饱和,使其催化活性失活。当加入与潜伏催化剂的寡核苷酸主链互补的 RNA 或 DNA 链时,会诱导催化活性,导致形成荧光产物的速率提高七倍,该产物是通过 Au 催化的氢胺化反应形成的。这种催化系统的进一步发展不仅将扩展合成生物系统可用的化学空间,而且还可以通过基因转录实现对过渡金属催化的时空控制。