Department of Physiology, University of Arizona, Tucson, Arizona.
Am J Physiol Renal Physiol. 2019 Sep 1;317(3):F720-F734. doi: 10.1152/ajprenal.00152.2019. Epub 2019 Jul 17.
Organic cation transporter 2 (OCT2) clears the blood of cationic drugs. Efforts to understand OCT2 selectivity as a means to predict the potential of new molecular entities (NMEs) to produce unwanted drug-drug interactions typically assess the influence of the NMEs on inhibition of transport. However, the identity of the substrate used to assess transport activity can influence the quantitative profile of inhibition. Metformin and 1-methyl-4-phenylpyridinium (MPP), in particular, display markedly different inhibitory profiles, with IC values for inhibition of MPP transport often being more than fivefold greater than IC values for the inhibition of metformin transport by the same compound, suggesting that interaction of metformin and MPP with OCT2 cannot be restricted to competition for a single binding site. Here, we determined the kinetic basis for the mutual inhibitory interaction of metformin and MPP with OCT2 expressed in Chinese hamster ovary cells. Although metformin did produce simple competitive inhibition of MPP transport, MPP was a mixed-type inhibitor of metformin transport, decreasing the maximum rate of mediated substrate transport and increasing the apparent Michaelis constant () for OCT2-mediated metformin transport. Furthermore, whereas the IC value for metformin's inhibition of MPP transport did not differ from the value for metformin transport, the IC value for MPP's inhibition of metformin transport was less than its value for transport. The simplest model to account for these observations required the influence of a distinct inhibitory site for MPP that, when occupied, decreases the translocation of substrate. These observations underscore the complexity of ligand interaction with OCT2 and argue for use of multiple substrates to obtain the needed kinetic assessment of NME interactions with OCT2.
有机阳离子转运体 2(OCT2)清除血液中的阳离子药物。为了了解 OCT2 的选择性,作为预测新的分子实体(NME)产生不良药物相互作用潜力的一种手段,人们通常评估 NME 对转运的抑制作用。然而,用于评估转运活性的底物的身份可能会影响抑制作用的定量特征。二甲双胍和 1-甲基-4-苯基吡啶鎓(MPP)尤其表现出明显不同的抑制特征,MPP 转运抑制的 IC 值通常比相同化合物对二甲双胍转运的抑制的 IC 值高出五倍以上,这表明二甲双胍和 MPP 与 OCT2 的相互作用不能仅限于竞争单个结合位点。在这里,我们确定了二甲双胍和 MPP 与在中华仓鼠卵巢细胞中表达的 OCT2 之间相互抑制相互作用的动力学基础。尽管二甲双胍确实对 MPP 转运产生了简单的竞争性抑制,但 MPP 是二甲双胍转运的混合型抑制剂,降低了介导的底物转运的最大速率,并增加了 OCT2 介导的二甲双胍转运的表观米氏常数(Km)。此外,尽管二甲双胍抑制 MPP 转运的 IC 值与二甲双胍转运的 Km 值没有差异,但 MPP 抑制二甲双胍转运的 IC 值小于其对 MPP 转运的 Km 值。最简单的模型来解释这些观察结果需要一个独特的 MPP 抑制性结合位点的影响,当该位点被占据时,会降低底物的易位。这些观察结果突显了配体与 OCT2 相互作用的复杂性,并呼吁使用多种底物来获得对 NME 与 OCT2 相互作用的所需动力学评估。