Department of Chemistry and Biochemistry , Southern Illinois University , Carbondale , Illinois 62901 , United States.
IBM T. J. Watson Research Center , Yorktown Heights , New York 10058 , United States.
Bioconjug Chem. 2019 Aug 21;30(8):2136-2149. doi: 10.1021/acs.bioconjchem.9b00366. Epub 2019 Aug 2.
From pathogen intrusion to immune response, the cell membrane plays an important role in signal transduction. Such signals are important for cellular proliferation and survival. However, measurement of these subtle signals through the lipid membrane scaffold is challenging. We present a chromatic model membrane vesicle system engineered to covalently bind with lysine residues of protein molecules for investigation of cellular interactions and signaling. We discovered that different protein molecules induced differential spectroscopic signals, which is based on the chemical and physical properties of protein interacting at the vesicle surface. The observed chromatic response (CR) for bound protein molecules with higher molecular weight was much larger (∼5-15×) than those for low molecular weight proteins. Through mass spectrometry (MS), we found that only 6 out of 60 (10%) lysine groups present in bovine serum albumin (BSA) were accessible to the membrane of the vesicles. Finally, a "sphere-shell" model representing the protein-vesicle complex was used for evaluating the contribution of van der Waals interactions between proteins and vesicles. Our analysis points to contributions from van der Waals, hydrophobic, and electrostatic interactions toward observed CR signals resulting from molecular interactions at the vesicle membrane surface. Overall, this study provided a convenient, chromatic, semiquantitative method of detecting biomolecules and their interactions with model membranes at sub-nanomolar concentration.
从病原体入侵到免疫反应,细胞膜在信号转导中起着重要作用。这些信号对于细胞的增殖和存活至关重要。然而,通过脂质膜支架来测量这些微妙的信号是具有挑战性的。我们提出了一种染色模型膜泡系统,该系统通过与蛋白分子的赖氨酸残基共价结合来研究细胞间相互作用和信号转导。我们发现,不同的蛋白分子诱导出不同的光谱信号,这是基于在囊泡表面相互作用的蛋白的化学和物理性质。观察到的与结合蛋白分子的颜色响应(CR)对于具有更高分子量的蛋白分子要大得多(约 5-15×),而对于低分子量的蛋白则小得多。通过质谱(MS)分析,我们发现牛血清白蛋白(BSA)中只有 6 个(10%)赖氨酸基团可与囊泡的膜接触。最后,使用“球壳”模型来表示蛋白-囊泡复合物,用于评估蛋白与囊泡之间的范德华相互作用对观察到的 CR 信号的贡献。我们的分析表明,观察到的 CR 信号是由范德华、疏水和静电相互作用共同作用于囊泡膜表面的分子相互作用产生的。总的来说,这项研究提供了一种方便、染色、半定量的方法,用于检测亚纳摩尔浓度下的生物分子及其与模型膜的相互作用。