Suppr超能文献

我们的数据,我们的社会,我们的健康:英国及其他地区包容性和透明性健康数据科学愿景。

Our data, our society, our health: A vision for inclusive and transparent health data science in the United Kingdom and beyond.

作者信息

Ford Elizabeth, Boyd Andy, Bowles Juliana K F, Havard Alys, Aldridge Robert W, Curcin Vasa, Greiver Michelle, Harron Katie, Katikireddi Vittal, Rodgers Sarah E, Sperrin Matthew

机构信息

Department of Primary Care and Public Health Brighton and Sussex Medical School Brighton UK.

ALSPAC, Population Health Sciences, Bristol Medical School University of Bristol Bristol UK.

出版信息

Learn Health Syst. 2019 Mar 25;3(3):e10191. doi: 10.1002/lrh2.10191. eCollection 2019 Jul.

Abstract

The last 6 years have seen sustained investment in health data science in the United Kingdom and beyond, which should result in a data science community that is inclusive of all stakeholders, working together to use data to benefit society through the improvement of public health and well-being. However, opportunities made possible through the innovative use of data are still not being fully realised, resulting in research inefficiencies and avoidable health harms. In this paper, we identify the most important barriers to achieving higher productivity in health data science. We then draw on previous research, domain expertise, and theory to outline how to go about overcoming these barriers, applying our core values of inclusivity and transparency. We believe a step change can be achieved through meaningful stakeholder involvement at every stage of research planning, design, and execution and team-based data science, as well as harnessing novel and secure data technologies. Applying these values to health data science will safeguard a social licence for health data research and ensure transparent and secure data usage for public benefit.

摘要

在过去六年里,英国及其他地区对健康数据科学进行了持续投资,这理应造就一个包容所有利益相关者的数据科学群体,各方共同努力,通过改善公众健康和福祉,利用数据造福社会。然而,通过创新性使用数据所带来的机遇仍未得到充分实现,导致研究效率低下以及本可避免的健康损害。在本文中,我们确定了健康数据科学实现更高生产率的最重要障碍。然后,我们借鉴以往的研究、领域专业知识和理论,概述如何克服这些障碍,同时应用我们包容性和透明度的核心价值观。我们相信,通过在研究规划、设计和执行的每个阶段让利益相关者有意义地参与,以及基于团队的数据科学,再加上利用新颖且安全的数据技术,能够实现巨大转变。将这些价值观应用于健康数据科学将保障健康数据研究的社会许可,并确保为了公共利益而透明、安全地使用数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5200/6628981/f9ad09cac58d/LRH2-3-e10191-g001.jpg

相似文献

1
Our data, our society, our health: A vision for inclusive and transparent health data science in the United Kingdom and beyond.
Learn Health Syst. 2019 Mar 25;3(3):e10191. doi: 10.1002/lrh2.10191. eCollection 2019 Jul.
2
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
7
Plant science decadal vision 2020-2030: Reimagining the potential of plants for a healthy and sustainable future.
Plant Direct. 2020 Sep 1;4(8):e00252. doi: 10.1002/pld3.252. eCollection 2020 Aug.
9
The Minderoo-Monaco Commission on Plastics and Human Health.
Ann Glob Health. 2023 Mar 21;89(1):23. doi: 10.5334/aogh.4056. eCollection 2023.

引用本文的文献

3
Creating a learning health system to include environmental determinants of health: The GroundsWell experience.
Learn Health Syst. 2024 Oct 10;8(4):e10461. doi: 10.1002/lrh2.10461. eCollection 2024 Oct.
5
Public Involvement and Engagement in Big Data Research: Scoping Review.
J Particip Med. 2024 Aug 16;16:e56673. doi: 10.2196/56673.
7
Beyond trust: Amplifying unheard voices on concerns about harm resulting from health data-sharing.
Med Access Point Care. 2021 Oct 1;5:23992026211048421. doi: 10.1177/23992026211048421. eCollection 2021 Jan-Dec.
8
Evaluation of routinely collected records for dementia outcomes in UK: a prospective cohort study.
BMJ Open. 2022 Jun 15;12(6):e060931. doi: 10.1136/bmjopen-2022-060931.
9
Challenges and opportunities for using population health data to investigate cancer survivors' quality of life in Australia.
Qual Life Res. 2022 Oct;31(10):2977-2983. doi: 10.1007/s11136-022-03112-3. Epub 2022 Mar 4.
10
Towards nationally curated data archives for clinical radiology image analysis at scale: Learnings from national data collection in response to a pandemic.
Digit Health. 2021 Nov 23;7:20552076211048654. doi: 10.1177/20552076211048654. eCollection 2021 Jan-Dec.

本文引用的文献

1
A Position Statement on Population Data Science: The Science of Data about People.
Int J Popul Data Sci. 2018 Feb 22;3(1):415. doi: 10.23889/ijpds.v3i1.415.
2
Embedding data provenance into the Learning Health System to facilitate reproducible research.
Learn Health Syst. 2016 Dec 27;1(2):e10019. doi: 10.1002/lrh2.10019. eCollection 2017 Apr.
6
Child mortality in England compared with Sweden: a birth cohort study.
Lancet. 2018 May 19;391(10134):2008-2018. doi: 10.1016/S0140-6736(18)30670-6. Epub 2018 May 3.
10
A guide to evaluating linkage quality for the analysis of linked data.
Int J Epidemiol. 2017 Oct 1;46(5):1699-1710. doi: 10.1093/ije/dyx177.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验