Kobara Yawo M, Akpan Ikpe Justice, Nam Alima Damipe, AlMukthar Firas H, Peter Mbuotidem
Odette School of Business, University of Windsor, Windsor, ON, Canada.
Department of Information Systems and Business Analytics, Kent State University, 800 E. Summit Street, Kent, OH, 44242, USA.
J Imaging Inform Med. 2025 May 16. doi: 10.1007/s10278-025-01538-y.
Data scieQuerynce (DS) methods and artificial intelligence (AI) are critical in today's healthcare services operations. This study focuses on evaluating the effectiveness of AI and DS in biomedical diagnostics, including automatic detection and counting of white blood cells (WBCs) and types, which provide valuable information for diagnosing and treating blood diseases such as leukemia. Automating these tasks using AI and DS saves time and avoids or minimizes errors compared to manual processes, which can be complex and error prone. The study utilizes bibliographic data from SCOPUS to evaluate research on applying AI algorithms and DS methods for mapping and classifying WBC images for treatment of blood diseases, such as leukemia using literature survey and science mapping methodology. The results show the potency of different DS methods and AI algorithms, such as machine learning, deep learning, and classification algorithms that enable the automatic detection of WBC images. AI and DS algorithms offer critical benefits in effectively and efficiently analyzing microscopic images of blood cells. The automatic identification, localization, and classification of WBCs speed up the patient diagnosis process, allowing hematologists to focus on interpreting results. Automatic processes identify specific abnormalities and patterns, enhancing accuracy and timely diagnoses. Future work will examine the application of generative AI in blood cells diagnostics.
数据科学(DS)方法和人工智能(AI)在当今医疗服务运营中至关重要。本研究重点评估AI和DS在生物医学诊断中的有效性,包括白细胞(WBC)的自动检测、计数及类型识别,这些可为白血病等血液疾病的诊断和治疗提供有价值的信息。与可能复杂且容易出错的手动流程相比,使用AI和DS自动化这些任务可节省时间并避免或减少错误。该研究利用来自SCOPUS的文献数据,采用文献综述和科学图谱方法,评估应用AI算法和DS方法对白细胞图像进行映射和分类以治疗白血病等血液疾病的研究。结果显示了不同DS方法和AI算法(如机器学习、深度学习和分类算法)在自动检测白细胞图像方面的效能。AI和DS算法在有效且高效地分析血细胞微观图像方面具有关键优势。白细胞的自动识别、定位和分类加快了患者诊断过程,使血液学家能够专注于解读结果。自动流程可识别特定异常和模式,提高准确性并实现及时诊断。未来的工作将研究生成式AI在血细胞诊断中的应用。