Konarov Aishuak, Kim Hee Jae, Voronina Natalia, Bakenov Zhumabay, Myung Seung-Taek
Department of Nano Technology and Advanced Materials Engineering & Sejong Battery Institute , Sejong University , Seoul 05006 , South Korea.
Institute of Batteries LLC, National Laboratory Astana , Nazarbayev University , 53 Kabanbay Ave ., Astana 010000 , Kazakhstan.
ACS Appl Mater Interfaces. 2019 Aug 14;11(32):28928-28933. doi: 10.1021/acsami.9b09317. Epub 2019 Jul 31.
The P2-NaMnO compound is one of the attractive cathodes for sodium-ion batteries due to its high initial capacity and abundance of Na and Mn elements in nature. The existence of Mn Jahn-Teller ion, however, impedes electrode performance for long term. Here, we challenge to minimize the effect of the Jahn-Teller distortion caused by Mn in the structure, via substitution of Mn by Co in P2-Na[MnCo]O ( = 0-0.3). The P2-Na[MnCo]O compound substantializes the electrochemical performance with a capacity of about 175 mAh g (26 mA g) and retained over 90% of its initial capacity for 300 cycles at 0.1 C (26 mA g) and 10 C (2.6 A g). The operando X-ray diffraction study indicates that a single-phase reaction is associated with the insertion of sodium ions into the structure, accompanied by a small volume change of approximately 3%. Furthermore, ex situ X-ray diffraction and high-resolution transmission electron microscopy results show that the crystal structure remained after 300 continuous cycles. It is believed that such good electrode performances attribute to the structural stabilization assisted by the presence of Co in the crystal structure. Our finding provides a way to take advantage of low-cost Mn-rich cathode materials for sodium-ion batteries.
P2-NaMnO化合物因其高初始容量以及自然界中丰富的钠和锰元素,成为钠离子电池颇具吸引力的阴极材料之一。然而,锰的 Jahn-Teller 离子的存在长期阻碍了电极性能。在此,我们通过在P2-Na[MnCo]O(x = 0 - 0.3)中用钴取代锰,来挑战最小化结构中由锰引起的 Jahn-Teller 畸变的影响。P2-Na[MnCo]O化合物实现了电化学性能,在0.1 C(26 mA g)和10 C(2.6 A g)下容量约为175 mAh g(26 mA g),并在300次循环中保持其初始容量的90%以上。原位X射线衍射研究表明,单相反应与钠离子插入结构有关,伴随着约3%的小体积变化。此外,非原位X射线衍射和高分辨率透射电子显微镜结果表明,经过300次连续循环后晶体结构依然存在。据信,如此良好的电极性能归因于晶体结构中钴的存在所辅助的结构稳定性。我们的发现为利用低成本的富锰阴极材料用于钠离子电池提供了一种方法。