Universidad de Valencia (ICMol) , Catedrático José Beltrán-2 , 46980 Paterna , Spain.
ISIS Facility , Rutherford Appleton Laboratory , Chilton, Didcot , Oxfordshire , OX11 0QX , United Kingdom.
J Am Chem Soc. 2019 Aug 21;141(33):13124-13133. doi: 10.1021/jacs.9b04915. Epub 2019 Aug 1.
The chemistry of metal-organic frameworks (MOFs) relies on the controlled linking of organic molecules and inorganic secondary building units to assemble an unlimited number of reticular frameworks. However, the design of porous solids with chemical stability still remains limited to carboxylate or azolate groups. There is a timely opportunity to develop new synthetic platforms that make use of unexplored metal binding groups to produce metal-linker joints with hydrolytic stability. Living organisms use siderophores ( in Greek) to effectively assimilate iron in soluble form. These compounds make use of hard oxo donors as hydroxamate or catecholate groups to coordinate metal Lewis acids such as iron, aluminum, or titanium to form metal complexes very stable in water. Inspired by the chemistry of these microorganisms, we report the first hydroxamate MOF prepared by direct synthesis. MUV-11 (MUV = materials of Universidad de Valencia) is a crystalline, porous material (close to 800 m·g) that combines photoactivity with good chemical stability in acid conditions. By using a high-throughput approach, we also demonstrate that this new chemistry is compatible with the formation of single-crystalline phases for multiple titanium salts, thus expanding the scope of accessible precursors. Titanium frameworks are regarded as promising materials for photocatalytic applications. Our photoelectrochemical and catalytic tests suggest important differences for MUV-11. Compared to other Ti-MOFs, changes in the photoelectrochemical and photocatalytic activity have been rationalized with computational modeling, revealing how the chemistry of siderophores can introduce changes to the electronic structure of the frontier orbitals, relevant to the photocatalytic activity of these solids.
金属有机骨架(MOFs)的化学依赖于有机分子和无机次级构筑单元的受控连接,以组装出数量无限的网状框架。然而,具有化学稳定性的多孔固体的设计仍然局限于羧酸盐或氮杂环丁二酸盐基团。现在有一个及时的机会来开发新的合成平台,利用未开发的金属结合基团来生产具有水解稳定性的金属-配体连接。生物利用铁载体(在希腊语中)有效地以可溶形式同化铁。这些化合物利用硬氧供体如羟肟酸或儿茶酚基团来配位金属路易斯酸如铁、铝或钛,以形成在水中非常稳定的金属配合物。受这些微生物化学的启发,我们报告了首例通过直接合成制备的羟肟酸 MOF。MUV-11(MUV = 瓦伦西亚大学的材料)是一种结晶多孔材料(接近 800 m·g),具有光活性和在酸性条件下的良好化学稳定性。通过使用高通量方法,我们还证明了这种新化学与多种钛盐形成单晶相的兼容性,从而扩展了可用前体的范围。钛骨架被认为是用于光催化应用的有前途的材料。我们的光电化学和催化测试表明,MUV-11 存在重要差异。与其他 Ti-MOFs 相比,通过计算建模对光电化学和光催化活性的变化进行了合理化,揭示了铁载体的化学如何引入对这些固体光催化活性相关的前沿轨道电子结构的变化。