Padial Natalia M, Lerma-Berlanga Belén, Almora-Barrios Neyvis, Castells-Gil Javier, da Silva Iván, de la Mata Marı A, Molina Sergio I, Hernández-Saz Jesús, Platero-Prats Ana E, Tatay Sergio, Martı-Gastaldo Carlos
Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna 46980, València, Spain.
ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom.
J Am Chem Soc. 2020 Apr 8;142(14):6638-6648. doi: 10.1021/jacs.0c00117. Epub 2020 Mar 30.
Reticular chemistry has boosted the design of thousands of metal and covalent organic frameworks for unlimited chemical compositions, structures, and sizable porosities. The ability to generate porous materials at will on the basis of geometrical design concepts is responsible for the rapid growth of the field and the increasing number of applications derived. Despite their promising features, the synthesis of targeted homo- and heterometallic titanium-organic frameworks amenable to these principles is relentlessly limited by the high reactivity of this metal in solution that impedes the controlled assembly of titanium molecular clusters. We describe an unprecedented methodology for the synthesis of heterometallic titanium frameworks by metal-exchange reactions of MOF crystals at temperatures below those conventionally used in solvothermal synthesis. The combination of hard (titanium) and soft (calcium) metals in the heterometallic nodes of MUV-10(Ca) enables controlled metal exchange in soft positions for the generation of heterometallic secondary building units (SBUs) with variable nuclearity, controlled by the metal incorporated. The structural information encoded in the newly formed SBUs drives an MOF-to-MOF conversion into bipartite nets compatible with the connectivity of the organic linker originally present in the crystal. Our simulations show that this transformation has a thermodynamic origin and is controlled by the terminations of the (111) surfaces of the crystal. The reaction of MUV-10(Ca) with first-row transition metals permits the production of crystals of MUV-101(Fe,Co,Ni,Zn) and MUV-102(Cu), heterometallic titanium MOFs isostructural with archetypical solids such as MIL-100 and HKUST. In comparison to de novo synthesis, this metal-induced topological transformation provides control over the formation of hierarchical micro-/mesopore structures at different reaction times and enables the formation of heterometallic titanium MOFs not accessible under solvothermal conditions at high temperature, thus opening the door for the isolation of additional titanium heterometallic phases not linked exclusively to trimesate linkers.
网状化学推动了数千种金属和共价有机框架的设计,这些框架具有无限的化学成分、结构和可观的孔隙率。基于几何设计概念随意生成多孔材料的能力推动了该领域的快速发展以及由此衍生出的越来越多的应用。尽管它们具有诸多诱人的特性,但适用于这些原理的目标同金属和异金属钛有机框架的合成一直受到该金属在溶液中高反应活性的无情限制,这阻碍了钛分子簇的可控组装。我们描述了一种前所未有的方法,通过在低于溶剂热合成常规使用温度的条件下,对MOF晶体进行金属交换反应来合成异金属钛框架。在MUV - 10(Ca)的异金属节点中硬(钛)金属和软(钙)金属的结合,使得在软位点能够进行可控的金属交换,从而生成具有可变核数的异金属二级结构单元(SBU),其由掺入的金属控制。新形成的SBU中编码的结构信息驱动了MOF到MOF的转化,形成与晶体中最初存在的有机连接体的连接性兼容的二分网络。我们的模拟表明,这种转变具有热力学起源,并由晶体(111)表面的终止控制。MUV - 10(Ca)与第一行过渡金属的反应允许生成MUV - 101(Fe,Co,Ni,Zn)和MUV - 102(Cu)晶体,这些异金属钛MOF与诸如MIL - 100和HKUST等典型固体同构。与从头合成相比,这种金属诱导的拓扑转变能够在不同反应时间控制分级微/介孔结构的形成,并能够形成在高温溶剂热条件下无法获得的异金属钛MOF,从而为分离不仅仅与均苯三甲酸连接体相关的其他钛异金属相打开了大门。