Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Symbiosis Knowledge Village, Gram: Lavale, Taluka: Mulshi, Pune 412115, India.
Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Symbiosis Knowledge Village, Gram: Lavale, Taluka: Mulshi, Pune 412115, India.
Acta Biomater. 2019 Sep 15;96:99-110. doi: 10.1016/j.actbio.2019.07.025. Epub 2019 Jul 15.
Presently donor-derived platelets used in the clinic are associated with concerns about adequate availability, expense, risk of bacterial contamination and complications due to immunological reaction. To prevail over our dependence on transfusion of donor-derived platelets, efforts are being made to generate them in vitro. Development of biomaterials that support or mimic bone marrow niche micro-environmental cues could improve the in vitro production of platelets from megakaryocytes (MKs) derived from various stem cell sources. In spite of significant advances in the production of MKs from various stem cell sources using 2D as well as 3D culture approaches in vitro and the development of biomaterials-based platelet systems, yield and quality of these platelets remains unsuitable for clinical use. Thus, in vitro production of clinically useful platelets on a large scale remains an unmet target to date. This review summarizes the most frequently used 2D and 3D approaches to generate MKs and platelets in vitro, emphasizing the importance of mimicking in vivo micro-environment. Further, this review proposes the use of interpenetrating network (IPN) biomaterial-based approach as a promising strategy for improving the generation of MK and platelets in sufficient numbers in vitro. STATEMENT OF SIGNIFICANCE: Thrombocytopenia is one of the major global health and socio-economic problems. Transfusion with donor-derived platelets (PLTs) is the only effective treatment for this condition. However, this approach is limited by factors like short shelf-life of PLTs, PLT activation, alloimmunization, risk of bacterial contamination, infection etc. In vitro generated MKs and PLTs derived from non-donor-dependent sources may help to overcome the platelet transfusion concerns. Here we have reviewed various 2D and 3D strategies used for in vitro generation of MKs and PLTs, with special emphasis on various biomaterial platforms and different physico/chemical cues being used for the purpose. We have also proposed a biomaterial-based approach of using interpenetrating network (IPN) for generating clinically relevant numbers of MKs and PLTs.
目前,临床上使用的供体来源的血小板与以下问题有关:充足的供应、费用、细菌污染的风险以及免疫反应引起的并发症。为了克服对供体来源血小板输注的依赖,人们正在努力在体外生成血小板。开发支持或模拟骨髓龛微环境线索的生物材料可以改善从各种干细胞来源的巨核细胞(MK)体外生成血小板的能力。尽管在使用二维和三维培养方法体外生成各种干细胞来源的 MK 方面取得了重大进展,并且开发了基于生物材料的血小板系统,但这些血小板的产量和质量仍不适合临床应用。因此,迄今为止,大规模体外生成临床上有用的血小板仍然是一个未满足的目标。本综述总结了最常使用的二维和三维方法来体外生成 MK 和血小板,强调了模拟体内微环境的重要性。此外,本综述提出使用互穿网络(IPN)生物材料方法作为一种有前途的策略,以改善体外大量生成 MK 和血小板的能力。
血小板减少症是全球主要的健康和社会经济问题之一。输注供体来源的血小板(PLT)是治疗这种疾病的唯一有效方法。然而,这种方法受到血小板寿命短、血小板激活、同种免疫、细菌污染风险、感染等因素的限制。来自非供体依赖来源的体外生成的 MK 和 PLT 可能有助于克服血小板输注的担忧。在这里,我们综述了各种用于体外生成 MK 和 PLT 的 2D 和 3D 策略,特别强调了各种生物材料平台和不同的物理/化学线索的应用。我们还提出了一种基于生物材料的方法,使用互穿网络(IPN)生成临床上相关数量的 MK 和 PLT。