Suppr超能文献

治疗前淋巴细胞与单核细胞比值对非小细胞肺癌的预后价值:一项荟萃分析。

Prognostic Value of Pretreatment Lymphocyte-to-Monocyte Ratio in Non-Small Cell Lung Cancer: A Meta-Analysis.

机构信息

Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.

West China School of Medicine, Sichuan University, Chengdu, China.

出版信息

Oncol Res Treat. 2019;42(10):523-531. doi: 10.1159/000501726. Epub 2019 Jul 18.

Abstract

Past evidence has shown that lymphocyte-to-monocyte ratio (LMR) could be considered as a potential prognostic factor in non-small cell lung cancer (NSCLC). We conducted the current meta-analysis based on published studies to elucidate the prognostic value of pretreatment LMR on survival outcomes in NSCLC. Comprehensive searches of available electronic databases were implemented to identify potentially related studies that focused on the role of pretreatment LMR in predicting the prognosis of NSCLC patients. The hazard ratios (HRs) with 95% confidence intervals (CIs) were combined to assess the association of pretreatment LMR with overall survival (OS) and progression-free survival (PFS). A total of 20 articles including 8,304 patients were analyzed. Compared with patients with higher LMR, patients with lower LMR had poorer OS (HR = 1.63, 95% CI: 1.44-1.85, p < 0.001) and PFS (HR = 1.49, 95% CI: 1.25-1.77, p < 0.001). The subgroup analysis outcomes were similar to the overall analysis. Pretreatment LMR may be a useful prognostic marker in patients with NSCLC. However, more well-designed studies are warranted to confirm our findings.

摘要

既往证据表明,淋巴细胞与单核细胞比值(LMR)可被视为非小细胞肺癌(NSCLC)的潜在预后因素。我们基于已发表的研究进行了本次荟萃分析,以阐明 NSCLC 患者治疗前 LMR 对生存结局的预后价值。我们全面检索了现有的电子数据库,以确定重点探讨治疗前 LMR 预测 NSCLC 患者预后作用的潜在相关研究。采用风险比(HR)及其 95%置信区间(CI)来评估治疗前 LMR 与总生存期(OS)和无进展生存期(PFS)之间的相关性。共分析了 20 篇文章,包含 8304 例患者。与 LMR 较高的患者相比,LMR 较低的患者 OS 更差(HR = 1.63,95%CI:1.44-1.85,p < 0.001),PFS 更差(HR = 1.49,95%CI:1.25-1.77,p < 0.001)。亚组分析结果与总体分析相似。治疗前 LMR 可能是 NSCLC 患者的一种有用的预后标志物。但是,需要更多精心设计的研究来证实我们的发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验