Blanco-Claraco Jose Luis, Mañas-Alvarez Francisco, Torres-Moreno Jose Luis, Rodriguez Francisco, Gimenez-Fernandez Antonio
Engineering Department, University of Almería, 04120 Almería, Spain.
Computer Science Department, University of Almería, 04120 Almería, Spain.
Sensors (Basel). 2019 Jul 17;19(14):3155. doi: 10.3390/s19143155.
Keeping a vehicle well-localized within a prebuilt-map is at the core of any autonomous vehicle navigation system. In this work, we show that both standard SIR sampling and rejection-based optimal sampling are suitable for efficient (10 to 20 ms) real-time pose tracking without feature detection that is using raw point clouds from a 3D LiDAR. Motivated by the large amount of information captured by these sensors, we perform a systematic statistical analysis of how many points are actually required to reach an optimal ratio between efficiency and positioning accuracy. Furthermore, initialization from adverse conditions, e.g., poor GPS signal in urban canyons, we also identify the optimal particle filter settings required to ensure convergence. Our findings include that a decimation factor between 100 and 200 on incoming point clouds provides a large savings in computational cost with a negligible loss in localization accuracy for a VLP-16 scanner. Furthermore, an initial density of ∼2 particles/m 2 is required to achieve 100% convergence success for large-scale (∼100,000 m 2 ), outdoor global localization without any additional hint from GPS or magnetic field sensors. All implementations have been released as open-source software.
在预建地图中对车辆进行精确定位是任何自动驾驶车辆导航系统的核心。在这项工作中,我们表明,标准的SIR采样和基于拒绝的最优采样都适用于高效(10到20毫秒)的实时姿态跟踪,无需进行特征检测,而是使用来自3D激光雷达的原始点云。受这些传感器捕获的大量信息的启发,我们对实际需要多少点才能在效率和定位精度之间达到最佳比例进行了系统的统计分析。此外,针对恶劣条件下的初始化,例如城市峡谷中GPS信号不佳的情况,我们还确定了确保收敛所需的最优粒子滤波器设置。我们的研究结果包括,对于VLP - 16扫描仪,对输入点云采用100到200的抽取因子可大幅节省计算成本,同时定位精度损失可忽略不计。此外,对于大规模(约100,000平方米)的室外全局定位,在没有来自GPS或磁场传感器的任何额外提示的情况下,需要约2个粒子/平方米的初始密度才能实现100%的收敛成功率。所有实现都已作为开源软件发布。