School of Mechatronic Engineering and Automation, Shanghai University, 99 Shanghai Road, Shanghai, China.
College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, China.
Comput Methods Programs Biomed. 2019 Aug;177:183-192. doi: 10.1016/j.cmpb.2019.05.028. Epub 2019 May 29.
Atrial fibrillation (AF) is one of the common cardiovascular diseases, and electrocardiography (ECG) is a key indicator for the detection and diagnosis of AF and other heart diseases. In this study, an improved machine learning method is proposed for rapid modeling and accurate diagnosis of AF.
This paper presents a novel IRBF-RVM model that combines the integrated radial basis function (IRBF) and relevance vector machine (RVM), which is utilized for the diagnosis of AF. The synchronous 12-lead ECG signals are collected from the human body surface so as to fully reflect the electrical activity of the whole heart. RR intervals of the QRS-waves in ECG signals are obtained by means of the classical Pan-Tompkins algorithm. The RR-features extracted from RR intervals are adopted as the diagnostic features for AF patients. In addition, the conventional RBF-RVM model, support vector machine (SVM) and other machine learning methods are also investigated for the diagnosis of AF so as to reflect the advantage of the proposed IRBF-RVM model. The open MIT-BIH arrhythmia database (MITDB) is also used to evaluate the predictive performance of these state-of-the-art methods.
Altogether 1056 AF patients and 904 healthy people are participated in this study and validate the effectiveness of each channel of the 12-lead ECG signals. Experimental results show that the classification rate of IRBF-RVM can reach up to 98.16% by recurring to Channel II of the 12-lead ECG signals.
IRBF-RVM absorbs the advantages of IRBF, which makes the kernel parameter of IRBF-RVM have a much larger selectable region than RBF-RVM. In addition, RVM has faster modeling and recognition speed in comparison with SVM. This work lays the foundation for the application of RVM to accurate diagnosis of AF.
心房颤动(AF)是常见的心血管疾病之一,心电图(ECG)是检测和诊断 AF 及其他心脏疾病的关键指标。本研究提出了一种改进的机器学习方法,用于快速建模和准确诊断 AF。
本文提出了一种新颖的集成径向基函数(IRBF)和相关向量机(RVM)的 IRBF-RVM 模型,用于 AF 的诊断。从人体表面采集同步 12 导联 ECG 信号,以充分反映整个心脏的电活动。采用经典的 Pan-Tompkins 算法获取 ECG 信号中 QRS 波的 RR 间期。RR 特征从 RR 间期中提取出来作为 AF 患者的诊断特征。此外,还研究了传统的 RBF-RVM 模型、支持向量机(SVM)和其他机器学习方法,以反映所提出的 IRBF-RVM 模型的优势。还使用公开的麻省理工学院生物医学工程系统(MITDB)数据库评估这些最先进方法的预测性能。
共有 1056 名 AF 患者和 904 名健康人参与了这项研究,验证了 12 导联 ECG 信号各通道的有效性。实验结果表明,通过反复使用 12 导联 ECG 信号的 II 通道,IRBF-RVM 的分类率可高达 98.16%。
IRBF-RVM 吸收了 IRBF 的优点,使得 IRBF-RVM 的核参数具有比 RBF-RVM 更大的可选区域。此外,与 SVM 相比,RVM 具有更快的建模和识别速度。这项工作为 RVM 应用于 AF 的准确诊断奠定了基础。