Calejo Isabel, Costa-Almeida Raquel, Reis Rui L, Gomes Manuela E
3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
Trends Biotechnol. 2020 Jan;38(1):83-98. doi: 10.1016/j.tibtech.2019.06.003. Epub 2019 Jul 15.
Musculoskeletal diseases are increasing the prevalence of physical disability worldwide. Within the body, musculoskeletal soft and hard tissues integrate through specific multitissue transitions, allowing for body movements. Owing to their unique compositional and structural gradients, injuries challenge the native interfaces and tissue regeneration is unlikely to occur. Tissue engineering strategies are emerging to emulate the physiological environment of soft-to-hard tissue interfaces. Advances in biomaterial design enable control over biophysical parameters, but biomaterials alone are not sufficient to provide adequate support and guide transplanted cells. Therefore, biological, biophysical, and biochemical tools can be integrated into a multifactorial toolbox, steering prospective advances toward engineering clinically relevant soft-to-hard tissue interfaces.
肌肉骨骼疾病正在全球范围内增加身体残疾的患病率。在体内,肌肉骨骼软组织和硬组织通过特定的多组织过渡整合在一起,以实现身体运动。由于其独特的成分和结构梯度,损伤会对天然界面构成挑战,组织再生不太可能发生。组织工程策略正在兴起,以模拟软组织到硬组织界面的生理环境。生物材料设计的进展能够控制生物物理参数,但仅靠生物材料不足以提供足够的支持并引导移植细胞。因此,可以将生物学、生物物理和生物化学工具整合到一个多因素工具箱中,推动在工程临床上相关的软组织到硬组织界面方面取得前瞻性进展。