Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA.
Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany.
Science. 2019 Jul 19;365(6450):251-256. doi: 10.1126/science.aav3587.
Understanding strongly correlated quantum many-body states is one of the most difficult challenges in modern physics. For example, there remain fundamental open questions on the phase diagram of the Hubbard model, which describes strongly correlated electrons in solids. In this work, we realize the Hubbard Hamiltonian and search for specific patterns within the individual images of many realizations of strongly correlated ultracold fermions in an optical lattice. Upon doping a cold-atom antiferromagnet, we find consistency with geometric strings, entities that may explain the relationship between hole motion and spin order, in both pattern-based and conventional observables. Our results demonstrate the potential for pattern recognition to provide key insights into cold-atom quantum many-body systems.
理解强关联量子多体状态是现代物理学中最具挑战性的问题之一。例如,在描述固体中强关联电子的 Hubbard 模型的相图上,仍存在一些基本的未解决问题。在这项工作中,我们实现了 Hubbard 哈密顿量,并在光学晶格中强关联超冷费米子的多次实现的单个图像中搜索特定模式。在掺杂冷原子反铁磁体后,我们在基于模式和常规可观测量中都发现了与几何弦的一致性,这些弦可能解释了空穴运动和自旋序之间的关系。我们的结果表明,模式识别有可能为冷原子量子多体系统提供关键的见解。