量子模拟中的实用量子优势。

Practical quantum advantage in quantum simulation.

机构信息

Department of Physics and SUPA, University of Strathclyde, Glasgow, UK.

Max Planck Institute of Quantum Optics, Garching, Germany.

出版信息

Nature. 2022 Jul;607(7920):667-676. doi: 10.1038/s41586-022-04940-6. Epub 2022 Jul 27.

Abstract

The development of quantum computing across several technologies and platforms has reached the point of having an advantage over classical computers for an artificial problem, a point known as 'quantum advantage'. As a next step along the development of this technology, it is now important to discuss 'practical quantum advantage', the point at which quantum devices will solve problems of practical interest that are not tractable for traditional supercomputers. Many of the most promising short-term applications of quantum computers fall under the umbrella of quantum simulation: modelling the quantum properties of microscopic particles that are directly relevant to modern materials science, high-energy physics and quantum chemistry. This would impact several important real-world applications, such as developing materials for batteries, industrial catalysis or nitrogen fixing. Much as aerodynamics can be studied either through simulations on a digital computer or in a wind tunnel, quantum simulation can be performed not only on future fault-tolerant digital quantum computers but also already today through special-purpose analogue quantum simulators. Here we overview the state of the art and future perspectives for quantum simulation, arguing that a first practical quantum advantage already exists in the case of specialized applications of analogue devices, and that fully digital devices open a full range of applications but require further development of fault-tolerant hardware. Hybrid digital-analogue devices that exist today already promise substantial flexibility in near-term applications.

摘要

几种技术和平台上的量子计算的发展已经达到了在人工问题上超越经典计算机的优势点,这个优势点被称为“量子优势”。作为这项技术发展的下一步,现在重要的是讨论“实用量子优势”,即量子设备将解决传统超级计算机无法处理的实际问题的优势点。许多最有前途的短期量子计算机应用都属于量子模拟的范畴:对与现代材料科学、高能物理和量子化学直接相关的微观粒子的量子特性进行建模。这将对几个重要的现实世界应用产生影响,例如为电池、工业催化或固氮开发材料。就像空气动力学可以通过数字计算机上的模拟或风洞中进行研究一样,量子模拟不仅可以在未来容错的数字量子计算机上进行,而且今天已经可以通过专用的模拟量子模拟器进行。在这里,我们概述了量子模拟的现状和未来展望,认为在模拟设备的特定应用中,已经存在初步的实用量子优势,而全数字设备则开辟了一系列全新的应用领域,但需要进一步开发容错硬件。今天已经存在的混合数字模拟设备已经在近期应用中提供了很大的灵活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索