Suppr超能文献

基于 STIRPAT 模型和岭回归的中国商业部门二氧化碳排放影响因素分析。

Analysis of influencing factors of the carbon dioxide emissions in China's commercial department based on the STIRPAT model and ridge regression.

机构信息

Department of Economics and Management, North China Electric Power University, Baoding, Hebei, China.

出版信息

Environ Sci Pollut Res Int. 2019 Sep;26(26):27138-27147. doi: 10.1007/s11356-019-05929-x. Epub 2019 Jul 18.

Abstract

Commercial department assumes the vital part in energy conservation and carbon dioxide emission mitigation of China. This paper applies the time-series data covering 2001-2015 and introduces the STIRPAT method to research the factors of commercial department's carbon dioxide emissions in China. The combination of STIRPAT method and ridge regression is first adopted to research carbon dioxide emissions of commercial department in China. Potential influencing factors of carbon dioxide emission, including economic growth, level of urbanization, aggregate population, energy intensity, energy structure and foreign direct investment, are selected to establish the extended stochastic impacts by regression on population, affluence and technology (STIRPAT) model, where ridge regression is adopted to eliminate multicollinearity. The estimation consequences show that all forces were positively related to carbon dioxide emissions in China's commercial department except for energy structure. Energy structure is the only negative factor and aggregate population is the maximal influencing factor of carbon dioxide emissions. The economic growth, urbanization level, energy intensity and foreign direct investment all positively contribute to carbon dioxide emissions of commercial department. The findings have significant implications for policy-makers to enact emission reduction policies in commercial sector. Therefore, the paper ought to take into full consideration these different impacts of above influencing factors to abate carbon dioxide emissions of commercial sector.

摘要

商业部门在中国的节能和减少二氧化碳排放方面发挥着重要作用。本文运用涵盖 2001-2015 年的时间序列数据,采用 STIRPAT 方法研究了中国商业部门二氧化碳排放的因素。本文首次将 STIRPAT 方法与岭回归相结合,研究中国商业部门的二氧化碳排放。选择了经济增长、城市化水平、总人口、能源强度、能源结构和外国直接投资等潜在影响二氧化碳排放的因素,建立了扩展的随机影响回归人口、富裕和技术(STIRPAT)模型,其中采用岭回归消除多重共线性。估计结果表明,除能源结构外,中国商业部门二氧化碳排放的所有因素均呈正相关。能源结构是唯一的负因素,总人口是二氧化碳排放的最大影响因素。经济增长、城市化水平、能源强度和外国直接投资都对商业部门的二氧化碳排放有积极的贡献。这些发现对政策制定者制定商业部门减排政策具有重要意义。因此,本文应该充分考虑这些不同影响因素对商业部门减少二氧化碳排放的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验