Huang William, Attia Peter M, Wang Hansen, Renfrew Sara E, Jin Norman, Das Supratim, Zhang Zewen, Boyle David T, Li Yuzhang, Bazant Martin Z, McCloskey Bryan D, Chueh William C, Cui Yi
Department of Materials Science and Engineering , Stanford University , Stanford , California 94305 , United States.
Energy Storage and Distributed Resources Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.
Nano Lett. 2019 Aug 14;19(8):5140-5148. doi: 10.1021/acs.nanolett.9b01515. Epub 2019 Jul 23.
The stability of modern lithium-ion batteries depends critically on an effective solid-electrolyte interphase (SEI), a passivation layer that forms on the carbonaceous negative electrode as a result of electrolyte reduction. However, a nanoscopic understanding of how the SEI evolves with battery aging remains limited due to the difficulty in characterizing the structural and chemical properties of this sensitive interphase. In this work, we image the SEI on carbon black negative electrodes using cryogenic transmission electron microscopy (cryo-TEM) and track its evolution during cycling. We find that a thin, primarily amorphous SEI nucleates on the first cycle, which further evolves into one of two distinct SEI morphologies upon further cycling: (1) a compact SEI, with a high concentration of inorganic components that effectively passivates the negative electrode; and (2) an extended SEI spanning hundreds of nanometers. This extended SEI grows on particles that lack a compact SEI and consists primarily of alkyl carbonates. The diversity in observed SEI morphologies suggests that SEI growth is a highly heterogeneous process. The simultaneous emergence of these distinct SEI morphologies highlights the necessity of effective passivation by the SEI, as large-scale extended SEI growths negatively impact lithium-ion transport, contribute to capacity loss, and may accelerate battery failure.
现代锂离子电池的稳定性严重依赖于有效的固体电解质界面(SEI),这是一层由于电解质还原而在碳质负极上形成的钝化层。然而,由于难以表征这种敏感界面的结构和化学性质,对SEI如何随电池老化而演变的纳米级理解仍然有限。在这项工作中,我们使用低温透射电子显微镜(cryo-TEM)对炭黑负极上的SEI进行成像,并追踪其在循环过程中的演变。我们发现,一层薄的、主要为非晶态的SEI在第一个循环中形核,在进一步循环时进一步演变成两种不同的SEI形态之一:(1)一种致密的SEI,含有高浓度的无机成分,能有效钝化负极;(2)一种延伸数百纳米的扩展SEI。这种扩展SEI在缺乏致密SEI的颗粒上生长,主要由碳酸烷基酯组成。观察到的SEI形态的多样性表明,SEI生长是一个高度不均匀的过程。这些不同的SEI形态同时出现,凸显了SEI有效钝化的必要性,因为大规模的扩展SEI生长会对锂离子传输产生负面影响,导致容量损失,并可能加速电池失效。