Suppr超能文献

一种用于头颈放射治疗中使用电影磁共振成像进行治疗期间上呼吸道运动跟踪的集成模型驱动方法。

An integrated model-driven method for in-treatment upper airway motion tracking using cine MRI in head and neck radiation therapy.

作者信息

Li Hua, Chen Hsin-Chen, Dolly Steven, Li Harold, Fischer-Valuck Benjamin, Victoria James, Dempsey James, Ruan Su, Anastasio Mark, Mazur Thomas, Gach Michael, Kashani Rojano, Green Olga, Rodriguez Vivian, Gay Hiram, Thorstad Wade, Mutic Sasa

机构信息

Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110.

ViewRay Incorporated, Inc., Oakwood Village, Ohio 44146.

出版信息

Med Phys. 2016 Aug;43(8):4700. doi: 10.1118/1.4955118.

Abstract

PURPOSE

For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns.

METHODS

Considering the complex H&N structures and ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method.

RESULTS

The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity coefficient (93.28%  ±  1.46%) and margin error (0.49  ±  0.12 mm) showed good agreement between the automatic and manual results. The comparison with three other deformable model-based segmentation methods illustrated the superior shape tracking performance of the proposed method. Large interpatient variations of swallowing frequency, swallowing duration, and upper airway cross-sectional area were observed from the testing cine image sequences.

CONCLUSIONS

The proposed motion tracking method can provide accurate upper airway motion tracking results, and enable automatic and quantitative identification and analysis of in-treatment H&N upper airway motion. By integrating explicit and implicit linked-shape representations within a hierarchical model-fitting process, the proposed tracking method can process complex H&N structures and low-contrast/resolution cine MRI images. Future research will focus on the improvement of method reliability, patient motion pattern analysis for providing more information on patient-specific prediction of structure displacements, and motion effects on dosimetry for better H&N motion management in radiation therapy.

摘要

目的

首次,磁共振成像(MRI)引导的放射治疗系统能够获取电影图像以动态监测治疗过程中内部器官的运动。然而,头颈部(H&N)结构复杂,且机载电影MRI图像的对比度/分辨率较低,这使得自动运动跟踪成为一项极具挑战性的任务。在本研究中,作者提出了一种集成的模型驱动方法,用于从电影MRI图像中自动跟踪H&N上气道在治疗过程中的运动,H&N上气道是一个复杂且高度可变形的区域,其内部运动常以自主或非自主方式发生,以便分析H&N运动模式。

方法

考虑到H&N结构复杂,并确保对上气道运动进行自动且稳健的跟踪,作者首先使用主成分分析,从一组训练数据上勾勒出的临床认可轮廓构建了一组链接统计形状(包括面部、面颌部和面颌腭部)。这些链接统计形状整合了显式地标和隐式形状表示。然后,开发了一种分层模型拟合算法,用于在待跟踪电影序列的第一图像帧上对齐链接形状,并定位上气道区域。最后,执行多特征水平集轮廓传播方案,以逐帧识别整个图像序列中上气道形状的变化。通过最小化包括强度变化信息、边缘显著性、曲线几何形状和时间形状连续性的多特征拟合能量,来捕捉移动气道边界的细节。利用从三名H&N癌症患者获取的矢状面电影MR图像序列来展示所提出的运动跟踪方法的性能。

结果

通过将结果与从每位患者随机选择的50个电影图像帧中的两次手动勾勒的平均值进行比较,验证了跟踪准确性。所得的平均骰子相似系数(93.28% ± 1.46%)和边缘误差(0.49 ± 0.12 mm)表明自动和手动结果之间具有良好的一致性。与其他三种基于可变形模型的分割方法的比较表明了所提出方法具有卓越的形状跟踪性能。从测试电影图像序列中观察到患者间吞咽频率、吞咽持续时间和上气道横截面积存在较大差异。

结论

所提出的运动跟踪方法能够提供准确的上气道运动跟踪结果,并能够对治疗过程中H&N上气道运动进行自动且定量的识别和分析。通过在分层模型拟合过程中整合显式和隐式链接形状表示,所提出的跟踪方法能够处理复杂的H&N结构和低对比度/分辨率的电影MRI图像。未来的研究将集中于提高方法的可靠性、分析患者运动模式以提供更多关于患者特定结构位移预测的信息,以及研究运动对剂量测定的影响,以便在放射治疗中更好地管理H&N运动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验