Suppr超能文献

基于传感器平台和车辆牌照字符识别的门禁控制

Barrier Access Control Using Sensors Platform and Vehicle License Plate Characters Recognition.

作者信息

Ullah Farman, Anwar Hafeez, Shahzadi Iram, Ur Rehman Ata, Mehmood Shizra, Niaz Sania, Mahmood Awan Khalid, Khan Ajmal, Kwak Daehan

机构信息

Department of Electrical & Computer Engineering, COMSATS University Islamabad-Attock Campus, Attock 43600, Pakistan.

Department of Computer Sciences, COMSATS University Islamabad-Attock Campus, Attock 43600, Pakistan.

出版信息

Sensors (Basel). 2019 Jul 9;19(13):3015. doi: 10.3390/s19133015.

Abstract

The paper proposes a sensors platform to control a barrier that is installed for vehicles entrance. This platform is automatized by image-based license plate recognition of the vehicle. However, in situations where standardized license plates are not used, such image-based recognition becomes non-trivial and challenging due to the variations in license plate background, fonts and deformations. The proposed method first detects the approaching vehicle via ultrasonic sensors and, at the same time, captures its image via a camera installed along with the barrier. From this image, the license plate is automatically extracted and further processed to segment the license plate characters. Finally, these characters are recognized with the help of a standard optical character recognition (OCR) pipeline. The evaluation of the proposed system shows an accuracy of 98% for license plates extraction, 96% for character segmentation and 93% for character recognition.

摘要

本文提出了一种传感器平台,用于控制安装在车辆入口处的障碍物。该平台通过基于图像的车辆车牌识别实现自动化。然而,在不使用标准化车牌的情况下,由于车牌背景、字体和变形的变化,这种基于图像的识别变得非常困难且具有挑战性。所提出的方法首先通过超声波传感器检测接近的车辆,同时通过与障碍物一起安装的摄像头捕获其图像。从该图像中,车牌被自动提取并进一步处理以分割车牌字符。最后,借助标准的光学字符识别(OCR)管道识别这些字符。对所提出系统的评估表明,车牌提取的准确率为98%,字符分割的准确率为96%,字符识别的准确率为93%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1e2/6650970/e7a9bf1e5e54/sensors-19-03015-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验