Department of Electrical Engineering and Information Systems, The University of Tokyo, 113-8656 Tokyo, Japan.
Department of Chemistry, The University of Tokyo, 113-0033 Tokyo, Japan.
Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15842-15848. doi: 10.1073/pnas.1902322116. Epub 2019 Jul 19.
Combining the strength of flow cytometry with fluorescence imaging and digital image analysis, imaging flow cytometry is a powerful tool in diverse fields including cancer biology, immunology, drug discovery, microbiology, and metabolic engineering. It enables measurements and statistical analyses of chemical, structural, and morphological phenotypes of numerous living cells to provide systematic insights into biological processes. However, its utility is constrained by its requirement of fluorescent labeling for phenotyping. Here we present label-free chemical imaging flow cytometry to overcome the issue. It builds on a pulse pair-resolved wavelength-switchable Stokes laser for the fastest-to-date multicolor stimulated Raman scattering (SRS) microscopy of fast-flowing cells on a 3D acoustic focusing microfluidic chip, enabling an unprecedented throughput of up to ∼140 cells/s. To show its broad utility, we use the SRS imaging flow cytometry with the aid of deep learning to study the metabolic heterogeneity of microalgal cells and perform marker-free cancer detection in blood.
将流式细胞术的优势与荧光成像和数字图像分析相结合,成像流式细胞术是癌症生物学、免疫学、药物发现、微生物学和代谢工程等多个领域的强大工具。它能够对大量活细胞的化学、结构和形态表型进行测量和统计分析,为深入了解生物过程提供系统的见解。然而,其应用受到需要荧光标记进行表型分析的限制。在这里,我们提出了无标记化学成像流式细胞术来克服这一问题。它建立在一对脉冲分辨波长可切换斯托克斯激光的基础上,用于在 3D 声聚焦微流控芯片上对快速流动的细胞进行迄今为止最快的多色受激拉曼散射(SRS)显微镜成像,实现了高达约 140 个细胞/s 的空前吞吐量。为了展示其广泛的应用,我们使用 SRS 成像流式细胞术,并借助深度学习来研究微藻细胞的代谢异质性,以及在血液中进行无标记的癌症检测。