Shi Jiayi, Teng Huijing, Zhang Ziyi, Liu Yanping, Gao Dan, Di Jianglei, Yang Zijian, Su Ping, Tan Ying, Ma Jianshe
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, PR China.
Institute of Advanced Photonics Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou, PR China.
Nat Commun. 2025 Jul 1;16(1):5890. doi: 10.1038/s41467-025-60897-w.
The combination of quantitative phase microscopy (QPM) with imaging flow cytometry (IFC) enables label-free and multi-parameter single-cell analysis. Here, we present a simple yet powerful QPM-IFC platform, the spatial microfluidic holographic integrated (SMHI) platform, which uniquely integrates spatial hydrodynamic focusing microfluidics with digital holographic microscopy (DHM) to achieve high-fidelity single-cell QPM reconstruction without digital refocusing in 0.34 seconds, accounting for only 4.41% of the typical process ( ~ 7.71 seconds). We develop a high-dimensional phase feature hierarchy and implement a maximun-relevance and minimun-redundancy incremental feature selection (MRMR-IFS) strategy, which effectively addresses feature redundancy and constructs the optimal feature set. Consequently, a prediction accuracy of >99.9% is achieved across multiple cancer cell types, breast cancer subtypes, and blood cells, demonstrating its efficacy in analyzing highly heterogeneous cell populations. Notably, this system also exhibits high accuracy in analyzing simulated blood samples, highlighting its great potential in practical applications.
定量相显微镜(QPM)与成像流式细胞术(IFC)相结合,能够实现无标记的多参数单细胞分析。在此,我们展示了一个简单却强大的QPM-IFC平台,即空间微流控全息集成(SMHI)平台,该平台独特地将空间流体动力聚焦微流控与数字全息显微镜(DHM)集成在一起,可在0.34秒内实现高保真单细胞QPM重建,仅占典型过程(约7.71秒)的4.41%。我们开发了一种高维相位特征层次结构,并实施了最大相关性和最小冗余增量特征选择(MRMR-IFS)策略,有效解决了特征冗余问题并构建了最优特征集。因此,在多种癌细胞类型、乳腺癌亚型和血细胞中均实现了>99.9%的预测准确率,证明了其在分析高度异质细胞群体方面的有效性。值得注意的是,该系统在分析模拟血液样本时也表现出高精度,凸显了其在实际应用中的巨大潜力。