Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas.
Department of Medicine, The University of Texas at Austin, Austin, Texas.
J Biophotonics. 2019 Dec;12(12):e201900154. doi: 10.1002/jbio.201900154. Epub 2019 Sep 2.
Diffuse reflectance spectroscopy (DRS) is a noninvasive, fast, and low-cost technology with potential to assist cancer diagnosis. The goal of this study was to test the capability of our physiological model, a computational Monte Carlo lookup table inverse model, for nonmelanoma skin cancer diagnosis. We applied this model on a clinical DRS dataset to extract scattering parameters, blood volume fraction, oxygen saturation and vessel radius. We found that the model was able to capture physiological information relevant to skin cancer. We used the extracted parameters to classify (basal cell carcinoma [BCC], squamous cell carcinoma [SCC]) vs actinic keratosis (AK) and (BCC, SCC, AK) vs normal. The area under the receiver operating characteristic curve achieved by the classifiers trained on the parameters extracted using the physiological model is comparable to that of classifiers trained on features extracted via Principal Component Analysis. Our findings suggest that DRS can reveal physiologic characteristics of skin and this physiologic model offers greater flexibility for diagnosing skin cancer than a pure statistical analysis. Physiological parameters extracted from diffuse reflectance spectra data for nonmelanoma skin cancer diagnosis.
漫反射光谱(DRS)是一种非侵入性、快速且低成本的技术,具有辅助癌症诊断的潜力。本研究旨在测试我们的生理模型(一种计算蒙特卡罗查找表逆模型)在非黑色素瘤皮肤癌诊断中的能力。我们将该模型应用于临床 DRS 数据集,以提取散射参数、血容量分数、氧饱和度和血管半径。我们发现该模型能够捕获与皮肤癌相关的生理信息。我们使用提取的参数对基底细胞癌(BCC)、鳞状细胞癌(SCC)与光化性角化病(AK)和(BCC、SCC、AK)与正常皮肤进行分类。使用生理模型提取参数训练的分类器的受试者工作特征曲线下面积与使用主成分分析提取特征训练的分类器相当。我们的研究结果表明,DRS 可以揭示皮肤的生理特征,与纯统计分析相比,该生理模型为诊断皮肤癌提供了更大的灵活性。从非黑色素瘤皮肤癌诊断的漫反射光谱数据中提取的生理参数。