Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria.
Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy.
J Inorg Biochem. 2019 Oct;199:110761. doi: 10.1016/j.jinorgbio.2019.110761. Epub 2019 Jul 11.
With >5000 annotated genes dye-decolorizing peroxidases (DyPs) represent a heme b peroxidase family of broad functional diversity. Bacterial B-class DyPs are poor peroxidases of unknown physiological function. Hydrogen peroxide efficiently mediates the rapid formation of Compound I in B-class DyPs, which, however, is stable and shows modest reactivity towards organic and inorganic electron donors. To understand these characteristics, we have investigated the redox thermodynamics of the one-electron reduction of the ferric high-spin form of wild-type B-class DyP from the pathogenic bacterium Klebsiella pneumoniae (KpDyP) and the variants D143A, R232A and D143A/R232A. These distal amino acids are fully conserved in all DyPs and play important roles in Compound I formation and maintenance of the heme cavity architecture and substrate access route(s). The E°' values of the respective redox couples Fe(III)/Fe(II) varied from -350 mV (wild-type KpDyP) to -299 mV (D143A/R232A) at pH 7.0. Variable-temperature spectroelectrochemical experiments revealed that the reduction reaction of B-class DyPs is enthalpically unfavored but entropically favored with significant differences in enthalpic and entropic contributions to E°' between the four proteins. Molecular dynamics simulations demonstrated the impact of solvent reorganization on the entropy change during reduction reaction and revealed the dynamics and restriction of substrate access channels. Obtained data are discussed with respect to the poor peroxidase activities of B-class DyPs and compared with heme peroxidases from other (super)families as well as with chlorite dismutases, which do not react with hydrogen peroxide but share a similar fold and heme cavity architecture.
DyPs 是一个具有广泛功能多样性的血红素 b 过氧化物酶家族,包含超过 5000 个注释基因。细菌 B 类 DyPs 是过氧化物酶活性较差、生理功能未知的蛋白。过氧化氢能够有效地介导 B 类 DyPs 中化合物 I 的快速形成,但该化合物 I 较为稳定,对有机和无机电子供体的反应活性也较低。为了理解这些特性,我们研究了来自致病性细菌肺炎克雷伯氏菌(KpDyP)的野生型 B 类 DyP 及其变体 D143A、R232A 和 D143A/R232A 的 ferric high-spin 形式的铁卟啉单电子还原的氧化还原热力学。这些远端氨基酸在所有 DyPs 中都是完全保守的,在化合物 I 的形成以及血红素腔结构和底物进入途径的维持中发挥着重要作用。相应氧化还原对 Fe(III)/Fe(II)的 E°'值在 pH 7.0 时从 -350 mV(野生型 KpDyP)变化到 -299 mV(D143A/R232A)。变温光谱电化学实验表明,B 类 DyP 的还原反应在焓上是不利的,但在熵上是有利的,四个蛋白之间 E°'的焓和熵贡献存在显著差异。分子动力学模拟表明了溶剂重排对还原反应中熵变的影响,并揭示了底物进入通道的动力学和限制。所得数据与 B 类 DyPs 的过氧化物酶活性较差有关,并与其他(超)家族的血红素过氧化物酶以及不与过氧化氢反应但具有相似折叠和血红素腔结构的亚氯酸盐歧化酶进行了比较。